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Abstract Social complexity has long been a subject of considerable interest and
study among archaeologists; it is generally taken to refer to human societies
consisting of large numbers of people, many social and economic roles, large
permanent settlements, along with a variety of other marker criteria. When viewed
from a more general complex systems perspective, however, all human societies are
complex systems regardless of size or organizational structure. Complex adaptive
systems (CAS) represent systems which are dynamic in space, time, organization, and
membership and which are characterized by information transmission and processing
that allow them to adjust to changing external and internal conditions. Complex
systems approaches offer the potential for new insights into processes of social
change, linkages between the actions of individual human agents and societal-level
characteristics, interactions between societies and their environment, and allometric
relationships between size and organizational complexity. While complex systems
approaches have not yet coalesced into a comprehensive theoretical framework, they
have identified important isomorphic properties of organization and behavior across
diverse phenomena. However, it is difficult to operationalize complex systems
concepts in archaeology using the descriptive/confirmatory statistics that dominate
quantitative aspects of modern archaeological practice. These are not designed to deal
with complex interactions and multilevel feedbacks that vary across space and time.
Nor do narratives that simply state that societies are characterized by interacting
agent/actors who share cultural knowledge, and whose interacting practices create
emergent social-level phenomena add much to our understanding. New analytical
tools are needed to make effective use of the conceptual tools of complex systems
approaches to human social dynamics. Computational and systems dynamics model-
ing offer the first generation of such analytical protocols especially oriented towards
the systematic study of CAS. A computational model of small-scale society with
subsistence agriculture is used to illustrate the complexity of even “simple” societies
and the potential for new modeling methods to assist archaeologists in their study.
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Introduction

Complexity has been a topic of interest to archaeologists since before Christian
Jürgensen Thomsen’s creation of the “three-age system” to group artifacts in the
Museum of Northern Antiquities (now the National Museum of Denmark) into Stone,
Bronze, and Iron Ages. What most archaeologists mean by complexity is social
complexity, generally associated with large, dense populations and a suite of charac-
teristics that include social hierarchies, socio-economic specialization, and urbanism
(Adams 2001; Carballo et al. 2013; Cowgill 2004; Feinman 2011; Feinman 1998;
Smith 2009). Given that human complex societies dominate the world today, under-
standing the origins and nature of this kind of complexity is indeed important.

But there is a different approach to complexity that can be applied to all human
societies, regardless of whether they meet the criteria of social complexity: that of
studying human social systems as exemplars of a broader phenomenon of complex
adaptive systems (Miller and Page 2007; Mitchell 2009a). There is a long history to
the idea of treating human societies as systems linked together by flows or exchanges
of materials, energy, and ideas (e.g., Flannery 1986; Moran 1991; Rappaport 1971).
In the broadest sense, systems are a collection of entities linked to one another in
some way—ranging from closed and static like the molecules of a crystal (i.e., not
requiring a continued input of energy tomaintain the linkages), to open (i.e., requiring an
external source of energy to maintain the system) and dynamic (i.e., changing through
time) like the cells that together form a jellyfish. Complex adaptive systems (or CAS) are
a class of open systems that share a number of special properties.

Complex Adaptive Systems

The following is a brief overview of the more salient concepts relevant to CAS; more
comprehensive discussions can be found in (Barabasi 2012; Cowan et al. 1994;
Henrickson and McKelvey 2002; Holland 2000; Lansing 2003; Mitchell 2009b;
Mitchell 2006; Simon 1962; Strogatz 2001), and additional examples of the applica-
tion of CAS concepts to archaeology can be found in (Bentley and Maschner 2003;
Bernabeu Auban et al. 2012; Feinman 2011). CAS are found naturally as living
organism and societies of organisms, as well as within human technologies (i.e., in
complexly engineered systems like airliners). The components of CAS are organized
into nested groups that can be represented as structured networks or organizational
hierarchies; the more complex the system, the deeper the nesting of the groups of
components. Multi-cellular organisms, like humans, are comprised of cells that
themselves are made up of nuclei and organelles within the cytoplasm. We are not
a blob of cells, however. Rather, the cells in our bodies are organized into organs that
are connected into larger organ systems like the cardiovascular system. These, in turn,
are linked together into the organic whole of our bodies. From a social perspective,
this organization of nested groups can be seen as nuclear families within forager
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bands, and bands within regional macrobands; households within clans within chief-
doms; or individuals within craft guilds within towns within states.

This organizational structure has a number of important consequences. Interactions
among components within one of the nested groups tend to be more frequent and
stronger than interactions between groups at any level in the nested hierarchy. Cells of
the heart interact more directly with other heart cells than they do with lung cells,
even though both are part of the cardiovascular system. Cells of the cardiovascular
system have more interactions with each other than they do with cells of the digestive
system. Similarly, social ties between forager bands are generally weaker than those
between the co-resident individuals and families within a band. Households have
more frequent, direct interactions with other households in the same town than they
do with households in other towns. As a result, groups that make up the nested
hierarchies of CAS often can continue to function even when their linkages to other
groups are broken. A heart can be removed from the body of one individual and
transplanted into another, and continue to function as it did before. A town can lose
its political connections with one state and be incorporated into another (e.g., due to
conquest in war), and life can go on much as before. This property of stronger
linkages within groups than between groups, and the ability of groups to operate
semi-independently of their connections to other groups in a nested hierarchy is called
near decomposability, and affects the way CAS develop and disaggregate.

As Simon (1962) illustrates with his fable of the two watchmakers, CAS tend grow
“organically” as low level components are joined into groups, and these groups are
joined into higher level metagroups. This organic process helps explain why past
societies seem to evolve toward levels of increasing complexity—especially when
seen from the backward-looking perspective of an incomplete archaeological record.
Multi-level social hierarchy does not develop directly from autonomous households,
but by combining social groups that already have simpler organizational hierarchies.
CAS tend to disaggregate in reverse order to the way they evolve: the highest level
groups become independent systems, disassociated from other groups, and which can
subsequently disaggregate into their respective subgroups. For example, the western
Roman Empire did not collapse into anarchy but decomposed into its administrative
provinces. These administrative units often coincided with the territories of pre-
Roman societies that shared social and political ties, conquered and assimilated by
the expanding empire. Moreover, their boundaries resemble those of modern nations
that make up the European Community today.

Because CAS components interact with other components in multiple dynamic
ways, in variable frequency and intensity across the nested hierarchical organization,
the scale and direction of change at the system-level is not necessarily proportional to
the scale and direction of the phenomena that trigger it. Additionally, it is more the
character of the interactions among components rather than their inherent character-
istics that determines the behavior of a CAS at the system level. Sometimes, a CAS
can absorb a great deal of perturbation and remain relatively unaltered; in other cases,
a comparatively minor disruption can initiate a cascade of changes that fundamentally
alter a complex system—and can even cause high-level linkages among components
to break, resulting in “collapse.” This nonlinear causality can make system-level
behavior difficult to predict from properties of the components alone. In fact,
complex systems often exhibit novel behaviors at the system level that are very
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different from anything exhibited by any components, a phenomenon called emer-
gence. An example of emergence can be seen in our individual bodies, which can
carry out behaviors that do not exist in any of our individual cells. Similarly, the
combined actions of many people and their shared cultural knowledge construct
jet airliners with alacrity, even though no single individual has the knowledge or
skills to do so.

A key emergent property of CAS is their capacity for computation. Not only
material and energy, but also information is transmitted among system components.
CAS components and groups at all levels, from DNA to cities, can receive informa-
tion about their surroundings, alter their behaviors in response to that information,
and transmit information about their state to other components. That is, CAS com-
ponents have agency. This agency can be mediated by chemical reactions, phero-
mones, or language and culture, and scales up through the hierarchical structure of
CAS. Simultaneously, the cells of our immune system are responding to changing
environmental conditions—receiving information about potential pathogens,
attacking or not attacking another cell they encounter, and transmitting their state to
other cells of the system to attract white blood cells to dispose of the pathogen (or
not)—while we are responding at the level of an individual human to conditions of
our internal immune system (e.g., through a fever and medical treatment) as well as to
the biophysical and social environments in which we find ourselves. This ability to
collect, process, and transmit information, and for system components to alter their
behaviors on the basis of this information, processing allows CAS to adapt and maintain
system-level integrity and function in changing internal and external environments.

Finally, with the exception of some technological systems, the organizational
structure, interactions, computation, and emergence that characterize CAS are not
imposed by some external force, but rather develop organically as a consequence of
endogamous rules that govern the behavior of individual components. This tendency
is often referred to as self-organization. Neither the development of a fertilized egg
into an embryo into an individual, nor the evolution of life from single cells to multi-
cellular organisms to social organisms is the result of an external guiding force, but the
expression of internal rules governing the behavior of each individual component as it
interacts with other components and other features of its environment over time. CAS
and their particular properties are the emergent consequences of individual agency.

Applying a CAS Approach to Prehistoric Socio-ecological Systems

CAS concepts have considerable potential for contributing to understanding the
dynamics of human societies and their interactions with the biophysical world.
Several aspects should be particularly attractive to those who take a more holistic
view of culture and society that emphasizes cultural/social drivers of change. These
include the idea that social dynamics are driven by the practices of individual actors,
who ascribe to a common body of knowledge but who make decisions contingent on
the practices of other actors and the structure of social interactions, as well as
biophysical characteristics of their environment. It is these actors whose endogamous
cultural practices dynamically create and recreate the emergent social phenomena we
see as societies.
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Johnson (1982) points out the pervasiveness of hierarchies throughout human
society, although they can take many forms and be transient or persistent, and notes
that it is the social interactions and practices, more than the characteristics of
individuals themselves that drive the emergence of social organization and its changes.
The CAS nature of human society is consistent with the difficulty in characterizing it
with simple, linear causal equations, and its frequent unexpected dynamics—and
unintended consequences. A CAS perspective can help account for features that are
fundamental to all human sociality and for the uniqueness of the myriad of expressions
of that sociality in diverse societies across the world, past and present.

In spite of its potential as an explanatory framework for the sciences of human
societies, applying a CAS framework in a meaningful way to the archaeological
record is challenging to say the least. Viewing human societies through a CAS lens
entails a focus on information flow, decision-making, interactions at multiple scales
of organization, and non-linear dynamics in which individual agency generates
system-level emergent phenomena—all of which are invisible in the archaeological
record. We have no way to directly observe the dynamics of ancient human societies
at either the actor or system level. It is a truism, but a trivial one, that every artifact is
the product of individual agency. The material record of this agency is a disorganized,
fragmentary, and often chaotic jumble of bits of objects produced by many different
actors over long periods of time. What meaningful patterns that we can observe are
indirect, material consequences of emergent phenomena, not agency nor emergence
itself (Barton et al. 2012; Shennan 2002).

Certainly, we can weave CAS phrases into the narratives we infer from the
archaeological record. But unless we change how we make sense of that record,
CAS concepts will be little more than the most current of a stream of competing
perspectives used to introduce what ultimately seem to be much the same kinds of
narratives about the past—whether imagined under the banner of processualism, post-
processualism, structuralism, post-structuralism, practice, historical ecology, or
historicity.

The main challenges for archaeology in operationalizing CAS concepts in a
science of long-term social dynamics are twofold. First, how can we systematically
track and explain non-linear chains of causality that cascade from multi-scale inter-
actions among individuals, groups, and the biophysical world up to the emergent
level of socio-ecological systems? This is especially difficult when traditional anal-
yses and narratives are inherently linear and our empirical data are static. New
methods of data collection and representation can help reveal and characterize the
spatially and temporally complex nature of the archaeological record itself (Altaweel
and Wu 2010; Chase et al. 2012; Kvamme 2007). Also, some equation-based models
of human behavioral ecology and related approaches can account for non-linear
dynamics (Hooper et al. 2010; Turchin 2003). However, even these models have
difficulty in adequately dealing with the kinds of multi-scale interactions of many
spatially and culturally heterogeneous, independent actors.

Second, even with a firm understanding of the dynamics of human societies, how
can we recognize and account for prehistoric socio-ecological CAS when key
features are not preserved in the archaeological record? That is, what are robust
proxies for CAS phenomena? While some preliminary examples of ways to identify
CAS characteristics from the archaeological record are beginning to appear
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(Bernabeu Auban et al. 2012), most archaeological treatises on CAS in archaeology
have focused more on its potential than actual applications to date (Adams 2001;
Bentley and Maschner 2003).

In part, meeting these challenges will require the development and application of
robust theory about drivers and nature of long-term change in CAS. However, new
forms of archaeological practice also can help begin to address the challenges of
applying CAS approaches in archaeology. Especially when dealing with human
societies as CAS, we can benefit from moving from inductive “reconstruction” of
an unknowable past from an inherently poor archaeological record, to systematic
experimentation and hypothesis testing, with validation (rather than inference)
against the archaeological record. Of course, it is impossible to carry out real-world
experiments with past human systems—or even with modern ones at the scales of
interest to most archaeologists. However, computational simulation modeling offers a
valuable protocol for combining anthropological and CAS knowledge to create
experimental environments in which to explore non-linear causality in complex
systems and generate results that can be evaluated against the empirical archaeolog-
ical record.

At a general level, models are any abstract representations of real-world
phenomena—including CAS. By computational modeling I am not referring any
model that is operationalized in a computer, but to a particular kind of simulation
modeling (i.e., modeling formalism) that involves the generation of multiple, discrete
computational entities or agents, imbued with a set of algorithmic rules for
sensing/filtering the environment, processing information and making decisions,
and taking actions on the basis of those decisions. These entities are activated (or
instantiated) to operate and interact in a virtual world without further control from the
researcher. Such computational entities can take the form of a gridwork of cells in a
cellular automata (CA), the nodes and edges (i.e., links) of a dynamic network, or
agents in an agent-based model (ABM; also known as an individual-based model in
ecology).

Simulations also have been applied occasionally in archaeology since the 1970s
(see Gaines and Gaines 1997). With a few exceptions (e.g., Hegmon 1989;
Wandsnider 1992; Wobst 1974), these have endeavored to replicate aggregate pro-
cesses at the level of societies or populations, rather than the interactions of agents
that create societies. While computational models can be used to simulate real-world
processes in great detail (e.g., some manufacturing processes), their greatest potential
for archaeology lies using them as environments of systematic, controlled, digital
experiments in human social and socio-ecological dynamics (Bankes et al. 2002;
Barton et al. 2012; van der Leeuw 2004). Such controlled modeling experiments
inherently involve a bounded subset of real-world phenomena in order to identify
important relationships and causal processes, rather than to reconstruct the world
(past or present) in silico. Importantly, such models are constructed from the bottom
up, requiring the integration of knowledge about human social processes and theory
about the relationships among individual actors and groups at multiple scales to
create the algorithms which drive agent perception, decision-making, and action. In
a sense, model building in this way is theory building, and especially suited to the
application of CAS concepts about human systems (Miller and Page 2007). Used in
this way, building computational models can help refine our concepts about the
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operation of societies, and the models can serve as complex hypotheses that can be
tested against the empirical record of archaeology. Below, I present an example of
some ways in which a simple computational model can be used to study complex
behaviors of human socio-ecological systems.

Modeling Complexity in Small-Scale SES

One of the first computational models I developed, simulated some of the socio-
ecological dynamics of small-scale, subsistence farming. I initially built the model to
answer a question about the relationship between the observable archaeological
record and the dynamics of past land-use and landscape change for small-scale early
Puebloan societies of the upland American Southwest (Barton 2013; Peeples et al.
2006). In the course of systematic, patch-based survey in the middle reaches of
Chevelon Creek (Apache-Sitgreaves National Forests, Arizona), I observed that small
farming sites were spaced at regular intervals. These sites seemed to have been
occupied for relatively short periods of time by small numbers of people, on the
basis of site size, limited midden accumulations, and lack of apparent architectural
elaboration. A preliminary analysis of ceramics also indicated that the sites may not
have been inhabited simultaneously. I suggested that farming households using
swidden cultivation, exhausted the productive potential of the thin soils of the
Colorado Plateau along Chevelon Creek after only a few years of use, and that these
soils regained fertility so slowly that they were permanently exhausted as far as the
Puebloan farmers were concerned. Households then moved to a new farmstead,
burned the pinyon/juniper woodland to clear and fertilize fields and started the cycle
again. Over the long-term, this practice created regularly spaced archaeological sites
as households repeatedly moved to locales that had not previously been farmed.

While this narrative sounded reasonable, it glossed over the complex interactions
of multiple households making independent decisions about where to farm, condi-
tional not only on idiosyncrasies of individual decision-making and biophysical
conditions, but also on past and present action of other farming households. In reality,
it was not possible to account for these complex dynamics in detail within narrative
prose. Moreover, although I could show the spatial patterning, there was no way to
confirm that the observed site distribution could have been formed in this way using
standard archaeological inferential methods. So I created a simple farming model to
test whether or not it was possible that swidden farming practices by a few initial
households in an environment of rapidly exhausted soils could produce an evenly
distributed pattern of sites. I use a revised and more sophisticated version of that
model here to illustrate the potential of computational modeling for the study of
human societies and long-term socio-ecological change as CAS.

The model, swidden farming v.21, is constructed in Netlogo (v. 5.03; Wilensky
1999), a powerful but easy to use platform for constructing, running, and visualizing
ABMs. Netlogo also includes the “Behavior Space” environment for setting up and

1 swidden farming v.2 can be downloaded from the Computational Modeling Library of CoMSES Net (the
Network for Computational Modeling in the Social and Ecological Sciences): http://www.openabm.org/
model/3826.
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running models as experiments in which parameters are systematically varied and
output saved to csv files that can be read by spreadsheet, statistics, or database
applications. The swidden farming v.2 model is abstract in that it does not use real-
world landscapes or values for farming labor and harvest returns. However, it
captures many of the key dynamics of small-scale farming and is useful for studying
the impact of land-use on settlement and other CAS dynamics.

The model can be run in controlled and adaptive modes. In the controlled mode,
the researcher controls all the parameters that govern land-use, and sets them prior to
running the model. These land-use parameters include: 1) the initial number of
households that start a simulation, 2) the minimum amount of accumulated resources
for a household to fission and form a new household, 3) the maximum distance
farmers travel to cultivate fields, and 3) the level of low resource returns at which a
household will decide to abandon a farm and move to a new locale. All households
begin with an arbitrary 100 energy units. These energy units serve as the currency for
land use costs, returns, and decisions (in human behavioral ecology models, calories
often serve the currency for costs and returns (Winterhalder and Smith 2000)). For
example, the resource levels at which a household will fission and reproduce itself is
expressed as a percentage of the initial 100 energy units. The researcher also controls
a number of environmental parameters, including: (a) harvest return, (b) costs to clear
land, and (c) costs to farm—all expressed as percentages of the initial energy
units—along with (d) the rate at which fertility is lost when a parcel of land is
farmed, and (e) is regained by soil when a patch is left fallow (in energy percentage
lost/gained per time unit). A percentage of bad years can be set during which harvests
are only half the normal. Finally, there are settings for land ownership and an adaptive
mode that will be discussed below.

The landscape of the virtual world that farming households inhabit is initially
covered completely by woodland. Households select land parcels (patches in Netlogo
terminology) that they clear of vegetation to farm. Each modeling cycle, each
household selects a parcel to cultivate within the radius of the maximum distance it
will travel to farm. Land is selected so as to maximize farming returns and minimize
the labor costs of land clearance and walking from farmstead to field. Land farmed in
a previous cycle needs less labor for clearing, but will produce lower returns because
fertility declines the more it is cultivated. If a parcel is left fallow, it begins to regrow
vegetation and can return to woodland after 50 modeling cycles. Fallowed land may
also regain fertility if the researcher has set a non-zero rate for soil rejuvenation.

Social Dynamics and the Archaeological Record

Figure 1 shows the swidden farming v.2 ABM interface at an early stage of a
simulation run, when small farms are just beginning to spread across the virtual
world. The model was instantiated with the settings shown in Fig. 1 and a single
farming household placed at a random location in the virtual world, and the simula-
tion repeated five times. During each simulation, households farm, exhaust the
surrounding soils, and move to new localities. If households accumulate enough
energy (50 % more than their initial energy for this particular set of parameters) to
reproduce themselves by fissioning, the daughter household then moves to a new
locale nearby to establish a new farmstead. Over time, soil fertility drops, harvest
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returns decline, and the amount of energy that each household can accumulate
likewise declines (Fig. 2). As a result, the population declines (Fig. 3) and farms
are abandoned to become archaeological sites as households die, disperse, or move
elsewhere. Eventually, the population drops to zero and the region is abandoned,
ending the simulation and leaving an apparently even distribution of sites (Fig. 4).
Because there is considerable stochasticity in exactly which plot of land a household
farms at any given time and in where the household will move if it abandons a farm,
no two runs of the simulation are identical. This is the common situation with ABM,

Fig. 1 Netlogo interface of the swidden farming v.2 ABM. In the main display window (right), the dark
green background is uncleared woodland that has not been claimed by a household. Lighter green circles
are areas of uncleared woodland that have been claimed by a household. Farmsteads are indicated by red
house icons in the center of the lighter green circles. Brown patches are currently farmed; white through
light green patches are fallowed parcels that are regrowing vegetation. Controls for setting model
parameters are on the left. Graphs and small monitor windows indicate current state of model variables
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Fig. 2 Farming results over time for model with settings shown in Fig. 1 and no regain of fertility (see
text). Red line (top) is mean energy per household, green line (center) is mean fertility per land parcel, and
blue line (bottom) is mean net farming returns (in energy units) per cultivated parcel of land. Time is in
model cycles (“ticks” in Netlogo terminology)
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making it important to carry out multiple repetitions of a simulation. This example
simulation was repeated five times, with very similar results. Figure 5 shows the
results of a nearest neighbor analysis that confirms the visual assessment of evenly
distributed archaeological sites produced by the model.

The ABM shown here does not demonstrate conclusively that a combination of
shifting cultivation and soil exhaustion actually did create the observed pattern of
sites in the real-world archaeological record along middle Chevelon Creek. But it
does show that such social-natural interactions would produce such a record. Other
evidence will be necessary to test whether this is a better explanation than alternatives
(e.g., a mass migration of farmers simultaneously occupied the region, dividing the
land among themselves).
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Fig. 3 Number of active households over time for model shown in Figs. 1 and 2 (see text)
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Fig. 4 Spatial distribution of archaeological sites (abandoned farmsteads) at the end of the simulations
shown in Figs. 1, 2, and 3 (see text)
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Thresholds, Phase Change, and Emergence

In such computational modeling experiments, there can be clear and unsurprising
relationships between systematic changes in parameters and simulation outcomes.
For example, allowing the soil to rejuvenate in the swidden farming v.2 ABM at even
a modest 2 % fertility gain per cycle allows the population of household agents to
reach a demographic equilibrium where the creation of new households is balanced
by the death or dispersal of other households (Fig. 6). Similarly, increasing harvest
returns allows more households to establish farms, creating a denser population.

However, not all changes lead to such easily predictable results. As noted above,
one property of CAS is that causation can be non-linear, with some large changes in
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Fig. 5 Nearest neighbor analysis of archaeological site distributions created by five repeated simulations of
the model shown in Figs. 1, 2, 3, and 4. Solid lines show cumulative distribution functions (CDF) for
distances between each site and its nearest neighbor. Dashed line shows the CDF for a random (Poisson)
distribution of the same number of sites. The fact that all sites CDFs are far below the random CDF for
nearest neighbor distances indicates that they are very evenly distributed

0 200 400 600 800 1000

0
20

40
60

80
10

0

Modeled Active Households Over Time

time

ho
us

eh
ol

ds

Fig. 6 Number of active households over 1,000 simulation cycles for a model with settings identical to
those shown in Figs. 1, 2, 3, 4, 5, and 6 but with soil fertility regained at a 2 % per model cycle rate if a land
parcel is not cultivated
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system components having minimal impacts at the system level, while other small
changes can significantly alter the system in unexpected ways. Also, an accumulation
of small changes in agent behavior may have little impact on the system as a whole up
to a point, but if they pass a threshold or tipping point, the system can rapidly
reconfigure into a new state—sometimes referred to as a phase change. Often, when
archaeologists are faced with explaining significant, rapid change in social systems,
there is a tendency to attribute large changes to large, external causes—significant
climate change, invasion by another society, epidemics. But from a CAS perspective,
we do not necessarily have to look for large scale causal phenomena to explain social
phase changes like explosive growth or collapse; these can result from an accumulation
of bottom-up small changes that pass a tipping point. However, the inherent non-linear
causality of CAS makes it difficult to trace the dynamics of system change in such
cases. Experimental computational modeling can help explore the dynamics of
emergence and narrow the range of plausible explanatory hypotheses to be tested.

The swidden farming v.2 ABM provides an example of how computational
modeling can help to identify small-scale changes that result in system-level emergent
behaviors. In the preceding example, a household claimed exclusive use of its surround-
ing territory for farming until it died or abandoned the farmstead and moved to a new
locale. This is not an unreasonable way tomodel small-scale farming. However, it is also
possible that if a household does not need to use all of its territory to provide sufficient
resources for survival and growth, it could transfer some of its unused land to another
household. This ability to transfer land ownership to another individual or group is
common in market economies like the United States, and also in small-scale societies
with variation in the amount of time land must lie idle before the original owner loses
control (Park 1997). The “transfer-ownership” option in the model interface (Fig. 1)
makes land parcels initially claimed by one household available to other households if
they have not been used a length of time set with the “max-fallow” slider. The model
makes no assumption about the nature of a transfer of ownership transaction, but only
that it is possible for unused land originally claimed by one household to be available for
use by another household. The surprising results are shown in Fig. 7.

The amount of time that a parcel of land must remain idle prior to being available
for transfer was set to 20, 10, 5, and 3 cycles, and the simulation repeated five times
for each setting. Because households do not die out or abandon the area, each
simulation ran for a standard 1,000 modeling cycles. When the amount of time that
a parcel must be idle before it can be transferred is long (max-fallow=20 cycles), the
main result is that many more people can occupy the landscape. Outside of the
transfer of ownership possibility, the model settings in Fig. 7 are identical to those
in Fig. 6. Yet, the maximum number of households simultaneously active is 10–20
times larger than without the transfer of ownership option. If the amount of time a
parcel must remain fallow before being transferred declines to 10 cycles, population
dynamics show no apparent difference from the 20-cycle limit.

However, when the fallow time before ownership transfer drops to five cycles, the
behavior of the system changes radically. There is a very rapid rise in the number of
households, followed by an equally rapid drop. The population subsequently can
remain relatively stable or oscillate between rapid growth and decline subsequently
(the value of multiple repetitions of a computational model run are apparent here).
When the fallow time before transfer drops to three cycles, the system exhibits a
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boom/bust population dynamic for the entire 1,000 cyles of the simulation. This is
very different from the system’s behavior with no option to transfer land ownership or
the requirement of a long time of disuse before transfer is allowed. A simple change
in ownership rules dramatically changes the behavior of the system as a whole in a
way that is very difficult to predict agent behavior but which can be identified through
modeling experiments.

There is no evidence that this kind of boom/bust dynamic occurred prehistorically
along the middle reaches of Chevelon Creek. Sites are small, evenly dispersed, and
somewhat widely spaced. There are no large accumulations of material culture. However,
such temporal patterning does occur in other contexts. In another part of the US
Southwest, detailed analysis of the archaeological record documents two intervals of
rapid population growth and even more rapid decline during the time span represented by
the occupation of the middle Chevelon Creek region (Kohler and Varian 2010). Using
sophisticated computational modeling, Kohler and colleagues attribute the demographic
changes to improvements in farming practices that increased carrying capacity and
warfare associated with the social and ecological stresses of higher population density.
It would be interesting to test the impacts of land tenure changes shown here in their
modeling environment. That fact that such a test can be reasonably proposed and
potentially implemented, is one of the benefits of this kind of research protocol.

Adaptation

An important characteristic of societies as CAS is their ability to adapt environmental
change. Adaptation is widely attributed to societies, although use of the term and perspec-
tives on the mechanisms that underlie adaptation vary considerably (O’Brien and Holland
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1992). In fact, the process of adapting is largely invisible archaeologically; it is only the
preserved materials residues of resultant adaptations that can be observed in the archaeo-
logical record. From a CAS perspective, adaptation is an emergent consequence of the
choices of many interacting actors. But this does not make it any more visible in the
archaeological record. In a computational modeling environment, however, agents can be
allowed to change their decision-making rules—to innovate—without input from the
researcher controlling the experiment. When this happens in a model like the swidden
farming v.2 ABM, where household agents can reproduce, households whose decision
rules allow them accumulate sufficient energy to fission more often and die/disperse less
often can become more numerous than other households. This is an example of a genetic
algorithm implemented in an ABM context (Holland 1992; Mitchell 1998). When the
“adaptation” option is enabled for the swidden farming v.2 ABM, households ignore most
of the researcher settings for decision rules, including (a) rules for the amount of accumu-
lated resources at which a household will fission, (b) the maximum distance farmers will
travel to fields, (c) the energy level at which a household will decide to abandon a farm and
move to a new locale, and (d) the maximum distance a household will move to establish a
new farmstead. For the starting households of the simulation, these decision rules are set
randomly, representing variability in social practice among households. If a household
fissions, the daughter household usually will keep the same rule set as the parent. However,
there is a chance—controlled by an “innovation rate” that is set at the beginning of the
simulation—that the daughter household will innovate and choose a new value for one of
these decision rules. The drivers of innovation are of considerable interest, of course
(Acemoglu et al. 2009; Boyd and Richerson 1985; Holland 1996; Martin and Simmie
2008; Shennan 2001). But to provide a simple example here, innovations are chosen
stochastically within a reasonable range of values.

The swidden farming v.2 ABM was instantiated with 50 agents to maximize initial
agent variability, and the innovation rate was set to a relatively high value of
100/1,000 cycles per agent. A set of experiments were performed in which the model
was run in adaptive mode for five repetitions of 1,000 cycles. The transfer of
ownership option was enabled, with only three cycles of non-use before a land parcel
was available for transfer, so that successful agent innovations would adapt the
system to a stressful environment of population boom and bust. Characteristics of
all household agents surviving after 1,000 cycles were analyzed for all five repeti-
tions. To facilitate this analysis, a hierarchical cluster analysis was carried using the
decision variables set by the agents, resulting in two distinct clusters.

The values for the farming decisions for the two household clusters are shown in
Fig. 8. Most households fit into the cluster group 1 pattern. These households are more
mobile, abandoning farmsteads when their energy drops only a little below its initial
value. They cultivate fields up to 12–13 patches away from their farmsteads, and tend to
move three times the maximum distance farmed to establish a new farmstead. Group 1 is
divided into two subgroups with regards to fissioning: most households reproduce
themselves when they accumulate energy of only 30 % or their initial amount; others
will not fission until they accumulate more than their initial energy level.

Group 2 households are much less numerous and employ a very different land-use
strategy. They are more sedentary do not move until their energy drops to below 75 %
of the initial value—and many will not move until it drops below 30 % of the initial
value. Like group 1 households, they tend to establish new farmsteads about three
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times their maximum farming distance from their old residence, but this farming
distance is much shorter than for group 1 households—only 6–7 patches. Finally,
group 2 households will reproduce when they have only accumulated about 25 % of
their initial energy. From this short and simple experiment, it is clear that at least two
different kinds of household-level strategies can permit agents to be successful in the
kind of socio-natural environment that creates boom-bust population oscillations.
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There is another way in which CAS/model adaptation can benefit archaeological
research. Archaeologists often want to know the kinds of actor-level practices that generate
the system-level material remains of the archaeological record. Systematic adaption-mode
computational modeling can help narrow the possibilities to a manageable set of agent
behavioral combinations to generate more readily testable hypotheses. Environments like
the Behavior Search extension for NetLogo (http://www.behaviorsearch.org) can use
genetic algorithms to create an environment in which models instantiated with different
parameters becomemeta-agents adapting to an “environment” specified by a desiredmodel
result (e.g., a pattern found in the empirical archaeological record). Model parameters can
be varied stochastically or according to a desired innovation function; models that come
closer to matching the desired pattern are more likely to “reproduce” and create new
models. The result is a population of models that converge on the desired solution. The
parameters (e.g., agent decision rules) of the most successful models represent a range of
values or characteristics more likely than others to create the observed empirical pattern.

As noted above for the Chevelon region, one of the fundamental issues of inference-
based archaeological reconstructions of past societies is that the same empirical patterns
can be produced by quite different socio-ecological processes. Generating knowledge of
the human past only from such inductive interpretations of an inherently incomplete
archaeological record can lead to insoluble arguments (Barton 2013). Using genetic
algorithms to automatically search through a large universe of possible human decisions
and interactions, to identify those combinations whose emergent results best match the
empirical record offers archaeology a suite of powerful conceptual and methodological
tools to advance our understanding of long-term social change.

Concluding Thoughts

It is important to be clear that there is no inherent relationship between CAS and
social complexity as normally discussed by archaeologists. Rather, a CAS approach
can be useful for understanding the behavior and evolution of human societies
exhibiting a diversity of organizational forms, including but not limited to those
social configurations commonly considered complex. Nevertheless, because CAS
concepts can scale up across all human societies, they provide a conceptually
coherent set of processes and structures that can used to track the rise of social
complexity (Adams 2001; Bernabeu Auban et al. 2012; Feinman 2013). This makes
them a particularly valuable tool set for both tracking and explaining social change.

The isomorphic processes and common vocabulary of CAS concepts are not
limited to human social organization, but are being applied much more broadly
across dynamic systems (Barabasi 2012). This opens the door to diverse comparative
studies, where simpler phenomena that can be studied under controlled conditions
can serve as model systems to help better understand human social dynamics, and
where the rich knowledge of human society can inform our understanding of CAS
more broadly (Aktipis 2006; Fewell et al. 2009; Peter and Davidson 2009).

Finally, as a historical and largely observational field, it has been difficult for
archaeology to take full advantage of many of the most useful scientific protocols that
lead to the construction and application of a robust and coherent body of theory to
explain the long-term dynamics of human sociality and the interactions between
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societies and the biophysical world. These protocols that center on the cycle of
inductive hypotheses generation and deductive hypotheses testing are most strongly
associated with scientific fields having a strong laboratory component, where con-
trolled experiments make the inductive/deductive cycles easier to carry out and
evaluate. This is not to say that fields like archaeology cannot support deductive as
well as inductive protocols, but that deductive hypothesis testing seems more difficult
to implement. Certainly, for all the talk of classical scientific methods in archaeology
for over half a century, most archaeological practice is strongly inductive, generating
inferences about the past from the archaeological record. However, in spite of
ongoing improvements in data collection methods and slow, but inexorable spread
of quantitative methods, the archaeological record usually is simply too sparse,
fragmentary, and jumbled to make reliable inferences about all but the most trivial
of past events (Barton et al. 2012; Barton and Riel-Salvatore 2012; Shennan 2002).

On the other hand, the archaeological record offers a rich and varied source of
empirical information for testing and refining formal models, encompassing enor-
mous diversity in human sociality at a global scale. The challenge lies in designing
models so that they can be tested against this record. When used in this way, the
incomplete and altered nature of the record is less problematic than when it is used to
“reconstruct” the dynamic, complex systems that comprise human societies.

The combination of CAS concepts and computational modeling provide a powerful
set of conceptual and methodological tools that can give archaeology—and other social
sciences—a laboratory component and the beginnings of a theoretical framework to
complement traditional inferential explanations with more robust hypothesis testing
(Kohler and van der Leeuw 2007; van der Leeuw 2004). Besides providing better
understanding of past human societies, this also can make archaeological knowledge
more broadly relevant and valuable for addressing general issues that pertain to socio-
ecological dynamics (Barton et al. 2010; van der Leeuw and Redman 2002).
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