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Chapter 10
“Digital Proxies” for Validating Models 
of Past Socio-ecological Systems 
in the Mediterranean Landscape Dynamics 
Project

C. Michael Barton, Isaac I. T. Ullah, Nicolas Gauthier, Nari Miller, 
Grant Snitker, Irene Esteban-Alamá, Joan Bernabeu Aubán, 
and Arjun Heimsath

10.1  Models in Archaeology

Recently, computational simulation modeling has been increasingly used in archae-
ology to represent and study the complex interactions among people and between 
people and environments (Kohler & van der Leeuw, 2007; Rogers & Cegielski, 
2017; Romanowska et al 2021; Wurzer et al 2015). This approach offers sophisti-
cated and transparent methods to study the invisible dynamics of past socio- 
ecological systems (SES) and test hypotheses about drivers of these dynamics, 
complementary to the analysis of the static behavioral residues that make up the 
archaeological record. We have often encountered criticism in reviews and informal 
comments from colleagues that such methods are “only models” and should be 
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taken as somehow less informative or meaningful than the empirical archaeological 
record. It must be noted, however, that the broken bits of trash that comprise this 
real-world record say nothing in and of themselves of ancient societal organization, 
practices, and environmental actions. Rather, interpretation of the archaeological 
record is used to reconstruct long-dead societies and their dynamics. These interpre-
tive reconstructions are also “only models,” whether in the form of natural language 
narratives, illustrations, maps, or graphs and whether the interpretations on which 
reconstructions of past SES are based on subjective intuition or quantitative analyt-
ics (Barton, 2013). That is, barring the invention of a time machine, a la H.G. Wells 
(1895) allowing for direct observation, we always have “only models” to represent 
the past systems that are the subject of archaeological inquiry.

Models are summary or abstract accounts of real-world phenomena and often 
also involve explanation. The most common models in archaeology are those that 
offer accounts of what happened, who did it, and where and when it took place. But 
especially in more recent archaeological scholarship, models also focus on how and 
why social and ecological phenomena happened as they did. Importantly, all archae-
ological models should be considered hypotheses. Even basic descriptive models of 
who, what, where, and when are not based on summarizing direct observations, but 
must be built on inference chains from the observable archaeological record to the 
invisible past that are often long, complicated, tenuous, and debated. Without the 
time machine of science "ction, we can never know the true past. But hopefully we 
can "nd ways to distinguish more likely, more realistic, and more useful models of 
the past from those that are less so (Barton, 2016; Box, 1979).

10.1.1  Validating Models

Validation involves evaluating the usefulness of a model, e.g., for representing par-
ticular processes or answering particular questions. An ef"cient way to differentiate 
more useful models from less useful ones is to use them to predict some aspect of 
the observable, empirical record (in this case the archaeological record) and then 
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assess the "t of the predicted results to the observed. Our inability to directly observe 
the past, together with the fragmentary and discontinuous nature of the archaeologi-
cal record, means that we cannot realistically expect any model to predict in detail 
the fraction of the archaeological record we actually recover in most cases. A more 
productive strategy is to generate a number of reasonable alternative models and see 
which are better and worse matches (Chamberlin, 1890; Grimm et al., 2005). In that 
way, we can at least eliminate models that do a poor job of predicting the empirical 
record and narrow the universe of potentially useful models to those that do the best 
job – so we can re"ne them to do better.

While straightforward conceptually, this protocol is often dif"cult to apply in 
archaeological practice. Nearly all of our narrative reconstructions and even most of 
our quantitative models are about conditions and actions of ancient people. Certainly, 
the objects of the archaeological record were once part of a rich materiality in daily 
life. But nearly all of what ends up in the samples archaeologists collect no longer 
served this role. Archaeological empirical data consists mostly of trash that no lon-
ger played direct roles in people’s lives when they were alive and has subsequently 
been altered or lost by diverse formation processes and time (Schiffer, 1987). While 
all archaeologists are aware of these facts, they are often paid less attention than 
deserved in practice. This makes validating models yet more dif"cult, even when 
they try to predict the material consequences of the structures and processes 
they treat.

It is tempting to think that the dif"culty with validating models is largely related 
to the vagaries of subjective and interpretive narratives and can be minimized with 
more explicit mathematical or computational representations of models, but this is 
not the case. An example is the growing use of models from human behavioral ecol-
ogy (HBE) in archaeology (Codding & Bird, 2015). Many of these robust, quantita-
tive models were developed to explain and predict the behavior of non-human 
animals but have been translated with some success to account for the behavior of 
humans. These analytical devices have been evaluated against observable animal 
and human behavior and found to be widely useful in certain contexts like repre-
senting foraging or farming practices (Gremillion, 2002; Keene, 1983; Smith et al., 
1983). But their outcomes are normally expressed in terms of the behavior of living 
humans and at time scales of months to minutes – not in units that resolve into the 
altered trash of the archaeological record nor time spans that match those of even 
the most detailed prehistoric records. This does not mean that they are not highly 
useful heuristics, but it makes them dif"cult to validate empirically for prehistoric 
societies using the archaeological record.

These validation issues are equally challenging for computational simulation 
models. These models can generate populations of computational agents or cellular 
landscapes representing past individuals, communities, their characteristics, and 
their locations. In effect, they generate the same kinds of scenarios found in narra-
tives but rendered in more explicit, quantitative form. If we want to treat these mod-
els as complex hypotheses, we confront again the fundamental differences between 
the composition of the material archaeological record and the digital worlds created 
by computational models. One way to resolve this model/data dissonance has been 
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to use the archaeological record to reconstruct past SES inferentially and compare 
those reconstructions to computationally generated representations of ancient SES 
(Barton et al., 2010; Kohler et al., 2012). Even when both models are sophisticated 
and explicit, this is unsatisfying from both logical and scienti"c perspectives. It is, 
in effect, testing a quantitative model by comparing it to an inferential, largely sub-
jective model; there is no direct comparison of model to data.

We cannot change the nature of the archaeological record, of course, even with 
more sophisticated data recovery methods. It will always be largely composed of 
refuse, disconnected from direct involvement in the lives of the people who made 
and used it; preserved and found in a fragmentary, altered state; and dispersed and 
subsequently recovered discontinuously in time and space. But we can create mod-
els that can be more directly compared with this imperfect empirical record.

The best known mathematical and computational models in archaeology to have 
taken this latter approach are the ones simulating the dispersal of agropastoral sys-
tems across Europe in the mid-Holocene. This line of investigation was pioneered 
by Albert Ammerman and Luigi Cavalli-Sforza (1971). Their model generated data 
that predicted the location and timing of the "rst farmers across Europe. These 
results were then directly compared with the empirical record of the locations and 
dates of the earliest Neolithic sites in Europe. This work inspired numerous, increas-
ingly sophisticated models taking a similar approach over subsequent decades, 
which have proven valuable for helping us understand multiple dimensions of the 
transition to food production in Europe (e.g., Fort et al. (2012) and Lemmen et al. 
(2011)). Beyond results that can directly be compared with the location and dates of 
sites, there have been few other attempts so far to create models that generate a 
“digital proxy record” that can be compared directly against the empirical one to 
evaluate complex computational models of past SES. Most of these have followed 
the spread of agricultural model approach of generating snapshot spatial distribu-
tions of a digital proxy record (Altaweel & Wu, 2010; Watts & Ossa, 2016). Yet, 
models can also generate information about system change through time, informa-
tion that is essential to archaeological explanation (Barton et al., 2016; Freeman 
et al., 2017; Kohler et al., 2012; Perry & O’Sullivan, 2018; Riris, 2018). Here we 
describe a new approach to generating a digital proxy record of long-term change in 
SES that can be more directly compared with the empirical record.

10.2  The Mediterranean Landscape Dynamics Project

The Mediterranean Landscape Dynamics Project (MedLanD) is an international 
and interdisciplinary research project, begun in 2004 and supported by the US 
National Science Foundation, which aims to help us better understand long-term 
dynamic interactions between rural land use, landscapes, and the emergence of 
coupled SES (Barton et al., 2016). This work builds on prior collaborative research 
on long-term human land use in Mediterranean Spain (Barton et al., 1999; Bernabeu 
Aubán et al., 1999; García Puchol et al., 2008). The MedLanD Project integrates 
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archaeological and paleoecological "eldwork with a multi-component computa-
tional modeling environment to simulate socio-ecological dynamics and feedbacks 
(the MedLanD Modeling Laboratory or MML). The empirical data collection pro-
gram and MML have been described in detail in many other papers (Barton et al., 
2010, 2012, 2015a, 2016; Barton, 2013; Mitasova et  al., 2013; Robinson et  al., 
2018; Sarjoughian et al., 2015; Ullah, 2017; Ullah & Bergin, 2012), and we provide 
only a brief summary here.

10.2.1  MedLanD Modeling Laboratory

The MML dynamically couples different models as components in a meta-model 
environment: an agent-based model (ABM) of households practicing subsistence 
agriculture and/or pastoralism, cellular automata models of vegetation growth, soil 
fertility dynamics, and geomorphic landscape evolution (e.g., erosion/deposition) 
along with climate scenario data (Barton et  al., 2010, 2015a, b, 2016; Mitasova 
et al., 2013). The components of the MML are connected through a coupler that 
both schedules events and passes information between components (Gholami et al., 
2014; Mayer & Sarjoughian, 2009; Robinson et al., 2018; Sarjoughian et al., 2013, 
2015) to permit high-resolution, realistic simulation of socio-ecological system 
dynamics.

The MML is designed as a con"gurable and controlled experimental environ-
ment to represent coupled human and natural systems (Miller & Page, 2007; van der 
Leeuw, 2004; Verburg et al., 2016). Villages and/or households comprise agents in 
the ABM to simulate land use decisions and behaviors of small-holder farming 
(Banning, 2010; Flannery, 1993; Kohler & van der Leeuw, 2007). These agents 
select land for cultivation and grazing using decision algorithms informed and 
parameterized by empirical studies of subsistence farming (Ullah, 2017). The MML 
is tuned to Mediterranean and xeric landscapes (Ullah, 2017) but could be parame-
terized to simulate small-holder agropastoralism in other environments. The land-
scape evolution model (LEM) iteratively evolves digital terrain, soil, and vegetation 
within a watershed by simulating sediment entrainment, transport, and deposition, 
and also tracks changes in soil depth and fertility due to cultivation and fallowing 
(Barton et al., 2016; Mitasova et al., 2013). A simple vegetation model simulates 
clearance for cultivation or removal by grazing and regrowth tuned to a Mediterranean 
50-year succession interval based on empirical studies in the region (Bonet, 2004; 
Bonet & Pausas, 2007). Climate parameters, from modern or paleoclimate data or 
simulation, can be entered iteratively from a "le or as a single set of values used for 
the entire simulation. Recently, we have added a component to model naturally 
occurring and anthropogenic landscape "re, to represent the use of "re by small- 
holder agropastoralists to clear land for cultivation or improve grazing for animals 
(Snitker, 2018).
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10.3  Validating Socio-ecological Systems Models

10.3.1  Empirical Proxy Data and Analysis

Because the goal of the MedLanD Project is to understand long-term interactions 
between land use and landscapes, much of the associated archaeological "eldwork 
has focused on systematic, patch-based survey of numerous valleys in central east-
ern Spain to provide regional-scale empirical data related to long-term land use. 
This collaborative work has been jointly directed by researchers at the University of 
Valencia and Arizona State University and included both Spanish and American 
team members. This survey methodology is described in detail elsewhere (Barton 
et al., 1999; Bernabeu Aubán et al., 1999, 2006, 2014; Diez Castillo et al., 2008, 
2014; García Puchol et al., 2014; Snitker et al., 2018). We have also carried out 
excavations and coring at occupational localities (Bernabeu Auban et  al., 2003; 
Bernabeu Aubán & Orozco Köhler, 2005; Bernabeu, 1993; Bernabeu et al., 1994; 
García Puchol et al., 2008; García Puchol and Aura Tortosa, 2006) and extracted 
sediment columns at the outlets of watershed basins of varying size (Snitker, 2019). 
This work has produced a rich and extensive empirical archaeological record of 
long-term land use and socio-ecological dynamics (Barton et al., 1999, 2004b, c; 
Bernabeu Aubán et al., 1999, 2006, 2008; Diez Castillo et al., 2008).

In recent MedLanD "eldwork, we have collected columns of sediment samples 
from natural exposures in alluvial deposits at the outlets of selected watersheds. 
This innovative data collection protocol, developed by one of the co-authors 
(Snitker), is based on the recognition that such deposits represent a spatially aver-
aged signal for a temporal sequence of landscape dynamics within the watershed 
basin upslope from the sampling location. By careful selection of locations at the 
outlets of differently located and different-sized watershed basins, these sediment 
columns can provide information about landscape processes – including erosion/
deposition, vegetation, "res, and human land use  – at multiple scales (Snitker, 
2019). Sediment samples of approximately 1 liter in volume were collected in 5 cm 
levels within each column. The top 30 cm of each column was excluded as repre-
senting the modern plow zone. Sediment samples were subdivided for analysis. 
Micro-charcoal analysis was conducted on one subsample, phytoliths were extracted 
from another set, and a third set is currently being analyzed for long-term catchment- 
averaged erosion rates and sediment transport rates using cosmogenic nuclides 
(10Be and 36Cl).

For the preliminary model validation protocol described here, we selected one 
such sediment column (SP.NV.7) in the middle of the Canal de Navarrés valley 
(Fig. 10.1). Extending 2.35 m below the modern surface, SP.NV.7 produced 24 sedi-
ment samples below the modern plow zone (Table 10.1). Three radiocarbon dates 
were obtained for the column and were used to generate an age-depth model for all 
samples, using procedures described in Parnell et al. (2011, 2008) and the BChron 
package in R (Parnell et al., 2008). This model provided age estimates for all sam-
ples, for use in comparison with model output described below.

C. M. Barton et al.
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Phytoliths were extracted using standard methods described in Katz et al. (2010) 
and identi"ed by Esteban (Table 10.2, Fig. 10.2). Descriptions and naming of the 
phytoliths follow the International Code for Phytolith Nomenclature 2.0 (Neumann 
et al., 2019). Diatoms and sponge spicules were also counted but not identi"ed taxo-
nomically. The sediments analyzed were deposited in periodically high-energy allu-
vial environments and contained a high proportion of sands and gravels, rather than 
in the low-energy environments normally preferred for micro-botanical studies. 
This posed several challenges for analysis and interpretation. To address this, prior 
to chemical extraction, sediment samples were sieved to a size fraction <0.025 cm 
due to the coarse character of the sandy sediments. Phytolith density was still very 
low, with most samples having <20,000 phytoliths per gram and a quarter of the 
samples lacking any phytoliths at all (Table 10.2). Additionally the coarse grain size 
and high-energy environment damaged many of the phytoliths that were recovered; 
weathered or otherwise unidenti"able phytoliths represented 10–70% (Table 10.2). 
As a result, the number of identi"able phytoliths was lower than what is normally 
desirable (Albert & Weiner, 2001); only two samples had more than 50 identi"able 
phytoliths after screening two slides. Because of the well-known relationship 

Fig. 10.1 (a) Location of Canal de Navarrés "eld work. (b) Archaeological survey zones and sedi-
ment column localities in Canal de Navarrés valley, overlay shading indicates estimated Neolithic 
land use intensity (see Snitker et al., 2018). (c) Parameterization for SES modeling, showing simu-
lated hamlet, farming and grazing catchments, and boundary of watershed draining through loca-
tion of core SP.NV.7
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Table 10.1 Chronology of core SP.NV.7. Radiocarbon dates and age-depth model calculated with 
BChron R package (Parnell et al., 2008, 2011)

Sample
Depth (cm 
BS)

Age-depth model 
(median age cal BP) Period

14C date (uncal 
BP)

14C lab 
number

SP.
NV.7.24

40–50 822 Medieval 692 ± 19 AA107775

SP.
NV.7.23

90–100 2617 Iron Age

SP.
NV.7.22

100–110 2955 Bronze Age

SP.
NV.7.21

110–120 3299 Bronze Age

SP.
NV.7.20

120–130 3648 Bronze Age

SP.
NV.7.19

130–140 3990 Chalcolithic

SP.
NV.7.18

140–150 4341 Chalcolithic

SP.
NV.7.17

150–155 4599 Late Neolithic

SP.
NV.7.16

155–160 4776 Late Neolithic

SP.
NV.7.15

160–165 4958 Late Neolithic

SP.
NV.7.14

165–170 5167 Late Neolithic

SP.
NV.7.13

170–175 5400 Late Neolithic 4586 ± 71 AA109784

SP.
NV.7.12

175–180 5632 Late Neolithic

SP.
NV.7.11

180–185 5871 Late Neolithic

SP.
NV.7.10

185–190 6112 Middle 
Neolithic

SP.
NV.7.09

190–195 6343 Middle 
Neolithic

SP.
NV.7.08

195–200 6572 Middle 
Neolithic

SP.
NV.7.07

200–205 6803 Early 
Neolithic

SP.
NV.7.06

205–210 7036 Early 
Neolithic

SP.
NV.7.05

210–215 7273 Early 
Neolithic

SP.
NV.7.04

215–220 7509 Early 
Neolithic

SP.
NV.7.03

220–225 7744 Late 
Mesolithic

(continued)
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between diversity and sample size, taxonomic diversity is probably underrepre-
sented, especially for rare morphotypes (Zurro, 2018). For this reason, we grouped 
phytolith morphotypes into broad ecological categories, rather than more speci"c 
taxa: grasses (grass silica short cells and elongates with decorated margins), herba-
ceous plants (elongates and acute bulbous phytoliths), woody plants including trees 
and shrubs (blocky, bocky polyhedral, spheroids psilate, sclereid, tracheary, and 
platelets), and riparian plants (papillate and spheroid echinate) (Table  10.2, 
Fig. 10.2). These ecological groups were suf"cient for comparisons with modeling 
output (see below), allowing us to calculate a simple index of land cover change as 
woody plant phytoliths/open vegetation phytoliths (grasses + herbaceous) 
(Fig. 10.3). This should not be taken as a direct, quantitative indicator of the relative 
proportion of trees and shrubs to grasses and herbaceous plants. The absolute num-
ber of phytoliths is affected by the biogenic processes that create phytoliths from 
dead plant matter and subsequent depositional circumstances (i.e., alluvial transport 
mentioned above) that embedded them in the sampled sediments. Rather, this index 
should be seen as a more general estimate of the changing relative importance of 
woody to open vegetation in the watershed that drains through SP.NV.7. That said, 
the overwhelming dominance of woody plants in the phytolith record suggests that 
trees and shrubs were a signi"cant, though #uctuating, component of the land cover 
in the watershed.

Charcoal was extracted using methods described in Snitker (2019) and analyzed 
by Snitker, using semi-automated digital identi"cation and counting software he 
developed (Snitker, 2020). Following methods used in Snitker’s doctoral research, 
charcoal fragments were classi"ed into four morphotypes, two of which represented 
woody and grass/herbaceous plants (Table 10.3, Fig. 10.2). Because of the above-
mentioned depositional environments, the number of charcoal fragments recovered 
from each sample also was low, as is the case for phytoliths. Especially relevant is 
the apparent destruction of the more fragile morphotypes in the high-energy alluvial 
environments, especially elongated forms associated with grasses and other open 
vegetation communities. The consequence of the very low number of these morpho-
types (Table  10.3) and overall low sample sizes is that we cannot meaningfully 
calculate even a land cover index like the one calculated for phytoliths. Nonetheless, 
the overwhelming dominance of charcoal from woody plants throughout the 
sequence is not in con#ict with the phytolith record, in which woody plants are well 
represented. However, we were able to compare changes in the overall density of 
charcoal accumulation with modeled charcoal accumulation.

Table 10.1 (continued)

Sample
Depth (cm 
BS)

Age-depth model 
(median age cal BP) Period

14C date (uncal 
BP)

14C lab 
number

SP.
NV.7.02

225–230 7986 Late 
Mesolithic

SP.
NV.7.01

230–235 8237 Late 
Mesolithic

7559 ± 46 AA110530
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10.3.2  Modeling Experiments and Digital Proxies

Output from the MML is primarily in the form of cellular raster grids representing 
“digital landscapes,” including the vegetation cover, land use, soil depth, overland 
hydrological #ow, net erosion-deposition, locations of "re (both lightning and 
human caused), and surface topography at each time step of the simulation, plus text 
"les likewise documenting demographic, subsistence, and economic dynamics of 
agent households and villages over the course of the simulation (Fig. 10.4). However, 
the diverse empirical dataset recovered in MedLanD Project "eldwork – including 
bags of sediment, extracted fragments of charcoal, plant silica phytoliths, collec-
tions of stone artifacts, and fragments of ceramic vessels – bears no resemblance to 
these digital representations of land use, landscapes, and inhabitants simulated by 
the MML. Because we cannot change the nature of the empirical archaeological 
record, we have modi"ed the MML to produce output that more closely matches the 
empirical data.

For the preliminary test of this validation protocol, we identi"ed a raster cell 
equivalent to the location of the SP.NV.7 sediment core on a high-resolution DEM 
of the Canal de Navarrés valley (based on 5 m LiDAR data from the Valencian gov-
ernment). We then mapped the watershed basin that drained through this locale 
using hydrological modeling tools in GRASS GIS (Fig. 10.1). Our survey and ana-
lytical methods enable us to estimate changing spatial patterns of occupational 
intensity through time (Barton et al., 1999, 2004a; Snitker et al., 2018). We identi-
"ed a region of higher occupational intensity for the early Neolithic within the 
boundaries of the watershed that drained through core sampling location and used a 
raster cell within this region as the location of a modeled farming hamlet to param-
eterize the MML (Fig. 10.1).

Fig. 10.2 Empirical proxy data from core SP.NV.7, Canal de Navarrés valley, Valencia, Spain: 
phytolith and charcoal morphotypes (see also Tables 10.2 and 10.3)
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When initialized with a raster digital elevation model (DEM) that matches a real- 
world landscape, the MML will simulate human and natural processes and conse-
quent changes to that landscape over time. Beginning with the modeled farming 
hamlet on a DEM that corresponds to the Canal de Navarrés valley, we set up a 
series of four modeling experiments with two different agropastoral subsistence 
strategies and two control runs without human land use (Table 10.4).

For both experiments with human land use, we parameterized a farming hamlet 
with 120 individuals who satisfy their caloric needs through a combination of farm-
ing and ovicaprine herding. Following parameterizations detailed in Barton et al. 
(2015a), we calculated farming and grazing catchments for a crop-oriented subsis-
tence strategy, where 80% of needed calories come from cereal agriculture and 20% 
from ovicaprines, and for a pastoral subsistence strategy, where 20% of needed 
calories come from cereal agriculture and 80% from ovicaprines. Farming catch-
ments were subsequently calculated assuming shifting cultivation and a preference 
for land within walking distance with a slope of ≤10° (Barton et al., 2015a; Bevan 
& Conolly, 2004); grazing catchments were more extensive but within an 8-hour 

Table 10.3 Charcoal morphotypes identi"ed and total charcoal fragments from core SP.NV.7 
(fragments per cm3)

Sample Geometric (woody plants) Elongated (grass) Irregular Indeterminate Total

SP.NV.7.24 0 0 0 0 0
SP.NV.7.23 8 0 2 3 13
SP.NV.7.22 9 0 3 8 20
SP.NV.7.21 10 0 5 1 16
SP.NV.7.20 5 0 11 14 31
SP.NV.7.19 16 1 16 8 41
SP.NV.7.18 16 0 33 20 69
SP.NV.7.17 5 1 44 13 63
SP.NV.7.16 33 1 28 11 73
SP.NV.7.15 53 0 33 7 93
SP.NV.7.14 35 0 48 19 102
SP.NV.7.13 10 0 22 12 44
SP.NV.7.12 24 0 42 11 77
SP.NV.7.11 4 1 26 8 39
SP.NV.7.10 17 0 24 4 45
SP.NV.7.09 8 1 15 10 34
SP.NV.7.08 17 0 30 17 64
SP.NV.7.07 13 0 28 20 61
SP.NV.7.06 10 0 23 14 47
SP.NV.7.05 20 0 47 16 83
SP.NV.7.04 7 0 29 10 46
SP.NV.7.03 12 0 36 3 51
SP.NV.7.02 11 0 19 3 33
SP.NV.7.01 17 0 25 6 48
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walking distance and without regard for slope (see Fig. 10.1). Fallow intervals and 
grazing intensity respond dynamically to changing community caloric needs, farm-
ing and grazing returns, and available labor during a simulation run (see Robinson 
et al., 2018). The simulation assumes that people used "re to clear land for cultiva-
tion; each time a cell is cleared, it generates digital micro-charcoal based on the 
vegetation growing on the cell at that time step. Additionally, lightning-caused "res 
are generated stochastically, based on topography and probability of storms (empir-
ically determined from regional weather data) (IVIA, 2015; see Snitker, 2018).

In most MML modeling work, we run control experiments without humans in 
order to better evaluate the net impacts of human land use (Barton et  al., 2010, 
2015a, 2016). Here, we ran two control experiments: one with initial vegetation 
cover equivalent to Mediterranean woodland and another with initial vegetation 
equivalent to Mediterranean matorral shrubland. Lightning-caused "res were simu-
lated as above, but we did not simulate anthropogenic "re in these two control 
experiments. In all four modeling experiments, rainfall was parameterized to mid- 
Holocene estimates, based on paleoclimate modeling.

Because the MML produces the abovementioned suite of raster landscape data 
for each yearly time step, it is possible to calculate for any given location (i.e., any 
speci"c raster cell in the digital landscape) a time series of the accumulation of sedi-
ment, depositional hiatuses, and erosional unconformities with an annual tempo-
ral resolution across an entire model run. We developed software that analyzes all of 
these rasters and employs transfer functions (Le & Shackleton, 1994) at each time 
step to mathematically transform values for simulated land use into “digital artifact” 
concentrations and transform simulated vegetation cover into “digital plant 

Fig. 10.4 Example raster output from the MedLanD Modeling Laboratory SES model (see text). 
Year 10 of agricultural scenario experiment (Table 10.4, Scenario 3). (a) High-resolution (5 × 5 m) 
LiDAR DEM of topography. (b) Human land use impacts (scale indicates decrease or increase in 
land cover value due to swidden farming or ovicaprine grazing). (c) Soil fertility (scale in percent 
of original fertility prior to human land use). (d) Net erosion or deposition for year 10 in each cell 
(scale in meters of accumulation or loss). (e) Land cover vegetation (scale in range of 0–50)
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phytoliths”; if "re is present, they also transform simulated vegetation cover into 
micro-charcoal.

For artifacts, all raster cells with simulated ovicaprine grazing generate 0–2 (ran-
domly selected) units of artifacts each year. All raster cells with simulated farming 
generate double the artifact units generated by grazing each year (0–4). Because we 
do not have empirical artifact data in the form of micro-artifacts from the SP.NV.7 
sediment column, we have not scaled or compared these values with empirical 
ones here.

Digital phytoliths are generated based on the proportions of open and woody 
vegetation, based on the land cover simulated by the MML. All but one of the four 
modeling experiments began with a land cover of Mediterranean woodland, includ-
ing trees with an understory of shrubs and grasses/herbs. The fourth began with a 
land cover of matorral shrubland, also with a grass/herb understory. For each time 
step, the proportion of open vegetation (ranging from 40% to 100% coverage of a 
cell) is multiplied by 2 g/m2, an empirically calculated rate of grass phytolith pro-
duction in grassland (Fredlund & Tieszen, 1994). Because this rate is based on 
steppe rather than Mediterranean environments, it may be somewhat high for the 
Canal de Navarrés. But in spite of studies of phytolith production in Mediterranean 
landscapes (e.g., Tsartsidou et al., 2007), we have been unable to "nd other data on 
phytolith generation rates that can be used to parameterize our modeling. The pro-
portion of woody vegetation (ranging from 0% to 100% coverage) is multiplied by 
0.02 g/m2 to represent the approximately two orders of magnitude lower phytolith 
production by woody plants (Albert & Weiner, 2001; Esteban et al., 2017; Tsartsidou 
et al., 2007; Esteban unpublished data from L’Estret de les Aigües, Xàtiva, Spain). 
The production rate of open and woody vegetation digital phytoliths is then multi-
plied by the area of each cell to create a map of grams per cell for each of these two 
digital phytolith types for each yearly time step.

The digital charcoal model uses maps of vegetation cover and lightning-caused 
"res, as well as maps of simulated farming and grazing for modeling experiments 
with anthropogenic land use. Vegetation cover is rescaled to aboveground plant bio-
mass (0–1.95 kg/m2) (Barton et al., 2015a; Ullah, 2017). This is multiplied by the 
proportion of plant biomass that produces charcoal fragments when burned (from 
0.0048 for grasses and herbaceous plants to 0.0325 for trees) and divided in half to 
represent the amount of charcoal large enough to be identi"ed (Carter et al., 1998; 
Flinn et  al., 1979; Forbes et  al., 2006). This is the amount of digital charcoal 

Table 10.4 Modeling experiments conducted. Each experiment was repeated 40 times. One 
repetition from each experiment was selected as an example for discussion in this paper

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Initial 
vegetation

Mediterranean 
woodland

Sparse 
matorral

Mediterranean 
woodland

Mediterranean 
woodland

Human 
impact

None None 80% swidden, 20% 
ovicaprine herding

20% swidden, 80% 
ovicaprine herding

Fires Lightning only Lightning 
only

Anthropogenic and 
lightning

Anthropogenic and 
lightning

C. M. Barton et al.
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generated by any cell that is farmed or has a natural "re. Cells that are grazed only 
generate charcoal at 0.05 times the rate described above. The results are then res-
caled into g/cell-like phytoliths.

Finally, the digital artifacts and ecofacts are accumulated in deposition or lost to 
erosion simulated for each cell and converted to a standard volumetric concentra-
tion in g/cm3 of sediment for each cell. To make digital phytolith concentrations 
more directly comparable with empirical measures, we rescale further to phytoliths 
per grams of sediment using a bulk soil density of 1.2184 g/cm3 and mean phytolith 
weight of 0.000011161 g estimated from Zurro (2018). For comparison with empir-
ical micro-charcoal, we rescale the digital proxy output to fragments/cm3, using a 
mean fragment weight of 0.00011304 g (Clark, 1988). This rescaling provides the 
data to more directly compare the results of complex SES modeling with empirical 
data recovered in "eldwork. Below, we describe a preliminary test of the analytical 
work#ow for this novel model validation instrument.

10.4  Results and Validation Tests

We report here on an initial test of proxy modeling protocols and the potential for a 
digital core to be compared with an empirical core or sediment column to help vali-
date complex SES model results. We ran each modeling experiment for 500 annual 
time steps and repeated each experiment 40 times. For the comparison reported 
here, we selected 1 of the 40 repetitions from each of the four experiments and gen-
erated an exemplar digital core to compare with SP.NV.7. The age-depth model 
allows us to identify a section of the empirical sediment column SP.NV.7 that spans 
the initial Neolithic occupation of the Canal de Navarrés valley to be roughly con-
temporaneous with the period represented by the simulation (though see below).

To create a more direct comparison with this section of the empirical sediment 
column, we bin the stratigraphically accumulated digital phytoliths and charcoal 
described above into 10 cm levels, aggregating the proxy accumulation within each 
level. We also calculate and aggregate the watershed basin average of the proxies for 
each level and add it to the level total for the outlet cell (i.e., digital core location) to 
simulate the combined in situ and exogenous contributions of digital proxies to each 
10 cm level (see Fredlund & Tieszen, 1994). For comparison with empirical phyto-
liths, we calculated a simple index of land cover change as the ratio of woody veg-
etation/open vegetation per level for “digital phytoliths” (Figs. 10.8, 10.9, and 10.10).

Some of these 10 cm digital units span simulated erosional gaps in the digital 
sediment record in an analogous way to sampling of real-world sediment columns. 
We assigned ages to each digital 10 cm sampling unit based on the model annual 
time step that corresponded to the sediment accumulation at the midpoint of each, 
analogous to age-depth models for real-world sediment columns. Finally, a calendar 
age was assigned to each level, based on the assumption that each model run began 
at 7500 cal BP and each model time step is equivalent to a calendar year (but see 
below). The results are shown in Figs. 10.5, 10.6, 10.7, 10.8, 10.9, and 10.10. Note 
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that, as with real-world deposits, some digital deposits are not as thick as others due 
to cumulative effects of erosion and deposition, and differential erosion and deposi-
tion rates resulted in a non-uniform distribution of the 10  cm digital samples 
through time.

This initial comparison is limited by the availability of empirical data as well as 
modeling procedures. As mentioned above, we have not yet completed analyses for 
cosmogenic nuclides, and the empirical sediment samples recovered were too small 
to contain suf"cient micro-artifacts for analysis. Although it may be possible to 
calculate digital grain size categories from modeled overland #ow, we have not yet 
done this. Hence, for the test reported here, we compare digital and empirical micro- 
charcoal and plant phytoliths from the modeled and real-world SP.NV.7 column 
location (Figs. 10.5, 10.6, and 10.7).

All model experiments produced quantities of digital proxies that agree closely 
with empirical concentrations of phytoliths and charcoal (Fig. 10.5), indicating that 
our proxy modeling protocol holds the potential to enable direct comparisons 
between complex, computational simulation models of SES and the empirical proxy 
data of the archaeological and paleoecological records. We set parameters in the 
MML to comparatively extreme values for land use practices to test whether 

6000

6500

7000

7500

8000

6000

6500

7000

7500

8000

ag
e 

ca
l B

P

charcoal
fragments per cm3

woody
phytoliths per gm

open vegetation
phytoliths per gm

charcoal
fragments per cm3

woody
phytoliths per gm

open vegetation
phytoliths per gm

concentrations per unit of sediment
Modeled Proxies - Agricultural Land-Use

concentrations per unit of sediment
Modeled Proxies - Pastoralist Land-Use

30
00

60
00

90
00

12
00

00 00 1 2 3 450 0 0.0 2.5 5.0 7.5 10
.0 0

25
00

50
00

75
00

10
00

0
50

0
10

0010
0

15
0

20
0

Fig. 10.7 Modeled digital proxies from MedLanD SES model output. Both anthropogenic land 
use scenario experiments (swidden agriculturalists and pastoralists – see Table 10.4 and text) were 
initialized with Mediterranean woodland land cover. Digital charcoal and phytolith concentrations 
are shown in units comparable to empirical proxies shown in Figs. 10.3 and 10.4

10 “Digital Proxies” for Validating Models of Past Socio-ecological Systems…



214

different forms of land use and non-human landscape evolution would generate 
clearly different digital proxy records. Indeed, very different digital proxy records 
were generated from different non-human land cover and human land use scenarios 
(Figs. 10.5, 10.6, 10.7, 10.8, and 10.9). Both anthropogenic land use models (agri-
cultural and pastoralist) were distinct from the non-human scenarios, creating 
degraded digital landscapes nearly devoid of trees. These differences can be seen 
clearly in the digital phytolith concentration values and woody/open vegetation 
index of Figs. 10.6, 10.7, and 10.8. Digital phytoliths from woody plants, especially, 
are over an order of magnitude less frequent in the agricultural and pastoral land use 
settings than in either the woodland or matorral scenarios due to land clearance for 
cultivation and ovicaprine grazing. Open vegetation phytolith concentrations are 
considerably more similar across all four modeling experiments. Digital charcoal 
accumulation tends to follow the concentrations of digital woody phytoliths. This 
mirrors the empirical charcoal record, heavily dominated by charcoal from woody 
plants (Fig. 10.2). Because there is less digital vegetation to burn in the degraded 
pastoralist scenario, the amount of digital charcoal is lower than in the other model 
experiments. Overall, these preliminary results show that digital phytoliths and 
charcoal are useful proxies for digital land cover under different land use scenarios, 
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meaning, in turn, that they provide a useful instrument for comparing and evaluating 
socio-ecological modeling results against an empirical record.

We did not expect any of the digital cores to closely match the corresponding 
empirical record dating to the early Neolithic from sediment column SP.NV.7 in this 
initial test of the protocol, and they do not (Figs. 10.8 and 10.9). Nonetheless, the 
differences between the empirical and digital proxies are informative, and there are 
also equally informative correspondences. The main differences between the empir-
ical proxy record in sediment column SP.NV.7 and the digital proxy record from our 
SES modeling experiments in the same watershed basin fall into three categories.

First, we intentionally parameterized the human land use with comparatively 
extreme values to assess the potential of a digital core to differentiate different pat-
terns of land use. As a result, the anthropogenic scenarios produce a rapid and sig-
ni"cant decline in woody vegetation phytoliths, along with a spike in the amount of 
digital charcoal at the beginning of the modeling interval not seen in the empirical 
record – analogous to landnám clearance noted in the paleoecological record else-
where in Europe (Edwards, 1993). Second, the ratios of woody to open vegetation 
phytoliths are several orders of magnitude lower in the digital proxy record than 
observed in the empirical samples (<0.001–0.002 for the digital phytoliths vs. 
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1.0–2.0 for the empirical phytoliths (Fig. 10.8). Finally, the temporal span of the 
digital core is much shorter and resolution much "ner than the empirical sediment 
column. The digital core only overlaps one sediment sample with phytoliths and 
two with charcoal. We discuss all three of these differences below.

The two anthropogenic land use experiments that simulated degraded and 
denuded anthropogenic landscapes are the least similar to the empirical data. That 
is, neither of the anthropogenic model experiments likely represent past human land 
use in the mid-Holocene Canal de Navarrés valley. The two non-human experiments 
are more similar to the empirical data, suggesting that they better represent ancient 
land use. In fact, other archaeological and paleobotanical data indicate a very low- 
level human presence in this valley during the early Neolithic (Bernabeu Auban 
et  al., 2014; Carrión & Van Geel, 1999; Snitker, 2018; Snitker et  al., 2018). 
Nevertheless, the differences between the anthropogenic and non-anthropogenic 
digital records parallel that of empirical records elsewhere where rapid, "re-enabled 
human land clearance is thought to have taken place.

It is puzzling that the woody/open vegetation index is orders of magnitude lower 
for the simulation than for the empirical column (Fig. 10.8), given that total digital 
phytolith concentrations are in line with empirical concentrations (Fig. 10.5). This 
is the case even for the digital samples from the initialization phases of the modeling 
experiments, covered in Mediterranean woodland for the non-anthropogenic wood-
land scenario and both anthropogenic scenarios. We could attribute this to a need to 
retune the algorithms that generate digital phytoliths for woody and open vegeta-
tion, even though they are based on empirical data for phytolith accumulation rates. 

Fig. 10.10 Comparison of ratio of woody to open vegetation and charcoal from core SP.NV.7 and 
digital proxies from matorral scenario experiment (Table 10.4, Scenario 2) rescaled so that 1 mod-
eled time step equals 2 calendar years and 4 calendar years
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An alternative explanation might be depositional and post-depositional processes 
affecting the empirical phytolith record that are not being simulated in our modeling 
experiments. Our proxy modeling algorithms simulate the generation and deposi-
tion of digital phytoliths from grassy and woody vegetation based solely on empiri-
cally observed phytolith generation rates. The only post-depositional process that 
affects the digital phytoliths is the erosion (i.e., removal) of some of the sediment 
layers in which they accumulate. However, a variety of biological and physical pro-
cesses do affect the preservation of phytoliths after deposition (e.g., Cabanes and 
Shahack-Gross (2015), Esteban et al. (2017), Evett and Cuthrell (2013), Piperno 
(2006)). In this respect, the kind of proxy modeling described here, re#ecting a 
more direct relationship between phytolith morphotypes proportions and vegetation 
cover, could potentially help calibrate phytolith proportions in real-world sediments 
where they may be altered by post-depositional processes.

Additionally, we note that both non-anthropogenic model experiments show a 
decline in woody vegetation after initialization. And though the woodland scenario 
begins with 100% coverage by a Mediterranean woodland and the matorral sce-
nario begins with a shrub-dominated landscape, they both rapidly reach similar 
equilibria of woody/open vegetation ratios between 0.0010 and 0.0015. A close 
examination of modeling results suggests that the evolution of the modeled land-
scape to one dominated by sparse shrubs and open vegetation may be due to the 
frequency of natural (lightning-caused) "res that we simulated for the experiments 
reported here. We may have set this frequency higher than needed, creating numer-
ous "res across the entire watershed that destroyed much (though not all) of the 
woody plants without any human intervention. Nevertheless, the empirical ratio of 
woody to open vegetation also drops by half after the oldest sample analyzed, paral-
leling the non-anthropogenic models.

Finally, we note the differences in temporal span and resolution between the 
modeled and empirical proxy records. Each model experiment ran for 500 time 
steps. While real-world landscape evolution processes ("res, rainfall, erosion/depo-
sition, plant growth) take place continuously or at sub-annual intervals (e.g., rain-
fall), we have attempted to tune the modeling algorithms to simulate 1 year in a time 
step. Testing whether or not this parameterization does indeed simulate a calendar 
year requires empirical validation. For example, given a possible overabundance of 
lightning-cause "res that we noted, perhaps a model time step better represents 
several years of "re and plant regrowth. Figure 10.10 shows the effects of rescaling 
model output so that a model time step represents two or four real-world years, with 
the matorral scenario as an example. The rescaling where one model time step is 
equal to four calendar years, especially, shows a considerably better match with the 
empirical record for the simulation experiment initialized with matorral land cover 
and lacking human land use.
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10.5  Conclusions

As quantitative and especially computational models come to play an increasingly 
important role in archaeological practice, we need to keep in mind that they are 
inherently no more or less accurate or useful than the inferential narrative models 
that have dominated the "eld since its inception. We also need to remember that all 
models are hypotheses about an empirically unknowable past. However, quantita-
tive models are more explicit and transparent, making them more amenable to sys-
tematic evaluation than narrative inferential models. As deductive, "rst principle 
models, they also can help us build a better theory about human behavior and socio- 
ecological processes (Miller & Page, 2007). To realize these bene"ts, we will need 
to develop and systematically apply new ways to evaluate quantitative models using 
the empirical archaeological record.

While there has been some progress made in devising ways to compare quantita-
tive model results against temporal snapshots of the spatial distribution of archaeo-
logical materials, one of the key contributions of archaeology to understanding 
human systems is its unique ability to study long-term change. It is important that 
we develop ways to test quantitative models of behavioral and socio-ecologic 
change against the archaeological record. We have reported on a new method for 
doing so, generating a time series of digital proxies that are directly comparable 
with archaeological and paleoecological proxies recovered from empirical strati-
graphic contexts. Reporting on an initial proof-of-concept test of a protocol to gen-
erate such digital proxy data, we can show several important outcomes that are 
promising for this new method:

• Complex SES models can generate digital proxy data in concentrations equiva-
lent to empirical proxies extracted from sediment samples.

• Models of long-term landscape dynamics representing different anthropogenic 
and non-anthropogenic scenarios can generate digital cores with distinct proxy 
records that correspond with landscape change in understandable ways.

• A digital proxy record can be usefully compared with a corresponding empirical 
record, in spite of issues with formation and post-depositional processes that can 
distort the empirical proxy record and issues with modeling algorithms that can 
distort model results. The fact that the non-anthropogenic digital proxy records 
best match the empirical one from the Canal de Navarrés valley is consistent with 
independent archaeological and paleoecological data from that region.

• Comparing digital and empirical proxy records can help guide the improvement 
of modeling algorithms and may also aid in correcting distortion in the empiri-
cal data.

Looking ahead, we plan to further re"ne the MML, adjusting the landscape "re 
algorithms, for example, and generate a suite of less extreme model parameteriza-
tions for anthropogenic land use to compare with the empirical record from the 
Canal de Navarrés valley and other study locales. We also will explore ways to 
aggregate repeated model runs (rather than using single exemplars like we did here) 
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and represent variation across runs as a measure of uncertainty. We hope that the 
work reported here can inspire other archaeological modelers to think creatively 
about how to integrate this powerful new technology and the material record that 
has long been the basis of archaeological knowledge. We also hope this inspires 
empirical research designed to generate data that can be more useful for parameter-
izing and validating computational SES models, as well as supporting more tradi-
tional archaeological and paleoecological research.

10.6  Access to Data and Analysis

Data and analysis scripts used to generate the "gures in this paper are openly acces-
sible at https://zenodo.org/record/5567816 (Barton 2021)
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