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A B S T R A C T   

This article introduces an agent-based modeling laboratory for investigating how evolving hazard information, 
propagated through forecaster, media, public official, and peer information networks, affects patterns of public 
protective-action decisions during hurricane threats. The model, called CHIME ABM, provides a platform for 
integrating atmospheric science, social science, and computer and information science knowledge and data to 
explore the complex socio-ecological dynamics of modern hazard information and decision systems from a new 
perspective. First, the model’s interdisciplinary conceptualization and implementation is described. Results are 
then presented from experiments demonstrating the model’s behaviors and comparing patterns of evacuation 
decisions when key agent parameters and the geographical population distribution, forecast skill, and storm are 
varied. The article illustrates how this type of theoretically and empirically informed digital laboratory can be 
used to develop new insights into the interactions among environmental hazards, information flow, protective 
decisions, and societal outcomes.   

1. Introduction 

As hurricanes such as Harvey, Irma, Maria, Florence, and Michael 
demonstrated during the 2017 and 2018 Atlantic hurricane seasons, 
improving hazard risk communication and decision making is critical for 
scientists and society (NASEM, 2017a, b; NWS, 2019). Most research on 
societal information flow and decision making for environmental risks is 
observational, using data from surveys, interviews, and other empirical 
methods. In the context of hurricanes (tropical cyclones), such research 
has developed a broad base of empirical understanding about how 
at-risk members of the public access and use risk information and make 
protective decisions (see, e.g., reviews in Baker, 1991; Dash and Glad
win, 2007; Lazo et al., 2015; Huang et al., 2016a). However, because 
this work typically focuses on specific populations or situations, findings 
can vary widely across studies (e.g., Huang et al., 2016a), and it is 
difficult to identify broader spatial and temporal patterns. 

Many of these existing studies also utilize data at the individual or 
household levels, which limits their ability to elucidate how the socially 
interactive processes underlying hazard risk communication and 
response scale up to influence outcomes (e.g., Drabek, 1999; Dash and 
Gladwin, 2007; Taylor et al., 2009). Moreover, in today’s world, forecast 

and warning information and its communication evolve rapidly as a 
hazard approaches, in conjunction with interacting individuals’ infor
mation behaviors, risk perceptions, and decisions (Lee et al., 2009; 
Morss and Hayden, 2010; Sherman-Morris et al., 2011; Morss et al., 
2017; Bica et al., 2019). Collecting the empirical data needed to analyze 
and understand these intersecting social, spatial, and temporal dynamics 
is challenging (Meyer et al., 2014; Morss et al., 2017; Demuth et al., 
2018). 

Computational modeling provides an opportunity to investigate 
hazard information flow and decisions using a fundamentally different 
approach—one that complements and builds on empirical studies. As 
discussed in Morss et al. (2017), weather prediction, communication, 
and decision making are interconnected components of a dynamic 
coupled natural-human system. When hazardous weather threatens, 
multiple types of actors interact to create, communicate, interpret, and 
use forecasts, warnings, and other risk information (Gladwin et al., 
2007; Demuth et al., 2012; Morss et al., 2015; Bostrom et al., 2016; Bica 
et al., 2019). Within this system, the risk information available and 
associated uncertainties change across space and through time. Further, 
in the modern, hyper-connected environment, information can be 
widely exchanged almost instantaneously; little is known about how 
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new hazard information propagates and influences protective decisions. 
Agent-based modeling provides a useful toolkit for exploring the dy
namics of this type of system. 

This article introduces a new agent-based modeling platform for 
investigating relationships among environmental hazards, hazard in
formation, information flow, and patterns in people’s protective de
cisions. The Communicating Hazard Information in the Modern 
Environment (CHIME) ABM was developed through collaboration 
among physical scientists, social scientists, computer and information 
scientists, and agent-based modelers, as part of a larger, multi-method 
project studying the dynamic, interconnected processes that charac
terize the modern hazard prediction, communication, and decision- 
making system (Morss et al., 2017). CHIME ABM was created to pro
vide a platform for integrating knowledge and data across disciplines to 
build understanding about the dynamical system of interest, connecting 
concurrent geophysical predictive modeling and empirical social and 
information science research (e.g., Anderson et al., 2016; Bica et al., 
2019; Demuth et al., 2018; Fossell et al., 2017; Kogan et al., 2015; Kogan 
and Palen, 2018; Morss et al., 2017; Wilenski, 1999). In doing so, we 
aimed to develop an interdisciplinary digital laboratory for running 
controlled experiments with different configurations of hazard infor
mation and social interactions, under various, dynamic scenarios (see, e. 
g., Waldrop, 2017; Verburg et al., 2016; Rovere et al., 2016; Magliocca 
and Ellis, 2016). 

The modeling platform was designed to represent key aspects of the 
real-world system of interest given our research goals, while remaining 
sufficiently simple to allow meaningful exploration and knowledge 
building (Sun et al., 2016; Buchmann et al., 2016; Allison et al., 2018). It 
is currently implemented for a hurricane threatening the US coastline 
over a five-day period, but it was designed to represent general features 
of weather hazard forecasting, warning, and response in order to enable 
a variety of future extensions. A core component of CHIME ABM is a 
model of hazard information flow and protective decisions with het
erogeneous agents who interact via peer and media networks. The agent 
types represent five types of key actors in hazard forecast and warning 
systems: forecasters, public officials, media broadcasters, other media 
aggregators and communicators, and citizens with varying individual 
characteristics. The agents interact with each other and with a virtual 
world with ocean and land areas, a hurricane that moves across the 
landscape, and forecast and other risk information that evolves as the 
storm approaches. 

Although agent-based modeling has previously been used in hazards 
research, the research discussed here differs from this previous work in 
several ways. One body of related work uses agent-based modeling to 
study evacuation planning for hurricanes (e.g., Chen et al., 2006; Zhang 
et al., 2009; Yin et al., 2014; Ukkusuri et al., 2017) or other hazards (e.g., 
Dawson et al., 2011; Wang et al., 2016; Bernardini et al., 2017). Such 
work focuses primarily on how collective evacuation behaviors interact 
with built infrastructure, in order to explore issues such as traffic de
mand, evacuation routing, and strategies for improving evacuation 
effectiveness. The emphasis of the agent-based modeling in these studies 
is therefore not on who decides to take protective action, when, and 
why, but on how people and vehicles move and interact after they decide 
to evacuate. Although evacuation logistics are important, they are not 
examined here; in CHIME ABM V1 (version 1), the agents do not 
physically move. Instead, we focus on how inter-agent dynamics and 
human-information-environment interactions influence patterns in 
evacuation decisions. 

Other studies have used agent-based models to examine how hazard 
information diffusion or protective decision making is influenced by a 
population’s characteristics, such as social networks or inter-individual 
heterogeneity (e.g., Widener et al., 2013; Rand et al., 2015; Dixon et al., 
2017). Again, the research presented in this article has a complementary 
but different emphasis. Although our work also focuses primarily on 
members of the public, we design and utilize a model with multiple 
types of interacting agents representing key roles in the warning 

communication and response system. In addition, we add a new type of 
dynamical interaction as a central theme by modeling different types of 
evolving hazard information — especially forecast information and 
associated uncertainty — interacting with the dynamical human be
haviors simulated by an agent-based model. 

Another previous application of agent-based modeling for hazards 
investigates hazard risk management decisions on longer (multi-year) 
time scales (e.g., Haer et al., 2016; Reilly et al., 2017; Tonn and Gui
kema, 2018). The modeling presented here expands on this type of work 
(and much of the agent-based modeling work on human-environment 
interactions; e.g., Parker et al., 2003; Boone et al., 2011; An, 2012; 
Rounsevell et al., 2012; Filatova et al., 2013; Barton et al., 2016; 
Groeneveld et al., 2017; Schulze et al., 2017) by examining interactions 
on much shorter time scales, where different types of information and 
decisions are important. The research presented in this article focuses on 
the time scale of a single hurricane threat, although CHIME ABM could 
be adapted to investigate social learning and other longer-term issues. 

Building on and extending previous related work, here we describe 
the conceptualization and implementation of a new agent-based 
modeling laboratory for investigating how interactions among geo
spatially distributed, heterogeneous agents influence and are influenced 
by hazard information flow, decisions, and outcomes. We then present 
results from a set of experiments illustrating how large-scale patterns of 
hazard risk management decisions can emerge from the decisions of 
many simplified, heterogeneous agents as they interact with each other 
and with their evolving physical and informational environment. For the 
initial model development and research shown here, we used a case 
study approach, performing simulations for the state of Florida, US, and 
two hurricanes that previously made landfall in the state. The model was 
designed to be flexible, however, and thus the modeling framework can 
readily be modified to study other regions, agent configurations, haz
ards, and hazard information. 

Section 2 provides an overview of CHIME ABM V1 and its key 
components. Section 3 describes the experimental design and imple
mentation and the analysis of the experimental output. Section 4 pre
sents results, beginning with the spatial and temporal patterns in 
evacuation decisions exhibited by the model. It then investigates the 
sensitivity of the model’s behavior to changes in three key parameter 
sets (the Citizen agents’ weighting of different types of information, the 
timing of public official agents’ evacuation orders, and the geographic 
distribution of the Citizen-agent population) and compares results for 
forecasts with two different levels of skill for two different hurricanes. 
Section 5 summarizes key results and discusses implications of this work 
for hurricane risk communication and future research. 

2. CHIME ABM: conceptual model and implementation 

CHIME ABM was developed and all reported experiments were run in 
the NetLogo 5.3 modeling environment (Wilenski, 1999; see Fig. 1). This 
section describes the major components of the model and key elements 
of their design. For further details, the commented code, an ODD spec
ification (a formal, detailed model description), and supporting input 
files are available for download at the CoMSES model library (https 
://www.comses.net/codebases/5504/releases/1.4.0/).1 

CHIME ABM V1 includes a spatially explicit modeled world repre
senting a geographical area of interest (described in section 2.1), a dy
namic hazard (i.e., a hurricane in this implementation) that moves 
through that world (section 2.2), evolving forecast information about 
that hazard (section 2.3), and a multi-agent model in which different 
types of hazard-related information are accessed and interpreted by 

1 Version 1.4.0 is a NetLogo 6.0.2 version of the code, which has been peer 
reviewed through the CoMSES Network. This version of the code also includes 
supporting files for model simulations in the Texas region of the US Gulf Coast 
(tested for Hurricane Harvey in 2017). 
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different agents, circulated among them, and used to assess risk and 
make protective decisions (section 2.4). These components are concep
tually and numerically interconnected as shown in Fig. 2. The simula
tions shown here use a one-hour time step and run for 120 time steps, 
representing 5 days. 

The time step, geography, and representations of the hazard, fore
casts, and agents in the current implementation of the model were 
designed to simulate decision-making in response to a tropical cyclone 
threat. However, the model was designed to represent fundamental 
features of hazard information and decision systems and thus to be 
adaptable to other geophysical hazards. 

To design and implement the model, we integrated expertise in 
agent-based modeling with knowledge and data from research and 
operational meteorology, emergency management, risk communication, 
information science, social vulnerabilities, and protective decision 
making. As in any modeling effort of this type, many aspects of CHIME 
ABM V1 are abstracted or simplified from the real world, and some real- 
world features and processes are not represented. Decisions about what 
to include in the model and how to represent it were based on our 
research questions, cross-disciplinary discussions among our research 
team, interactions with the larger research project discussed in Morss 
et al. (2017), and review of relevant literature. Elements of the model 
version presented here could readily be modified or expanded to address 
additional research questions, and several features of the model were 
designed to facilitate such future work. 

2.1. Modeled world 

The modeled world is a cellular representation of a geographic area 
of interest, which can be real or imagined, and includes land and ocean 

surface. In the simulations shown here, the world is the state of Florida 
(US) and surrounding oceans, derived from a GIS digital elevation model 
(DEM) in ESRI ASCII raster format with a spatial resolution of 0.5 km. 
We used a realistic rather than abstract geographical domain in order to 
provide a starting point for more complex future experiments. We 
selected Florida for initial model development and testing because it is 
an area of the mainland US that is highly susceptible to hurricanes, 
although it had not experienced a major hurricane landfall in several 
years when we began our study. 

To create the modeled world used here, the DEM is imported into 
NetLogo and interpolated to model environment cells with a spatial 
resolution of 5.91 km (3.67 mi). Elevation is not used in the current 
version of the model algorithms but is included for potential use in 
future experiments, e.g., for estimating a cell’s level of flood risk. Data 
for Florida counties, county seats, and population density (derived from 
US Census data for the year 2000) are also imported into NetLogo and 
applied to the model cells. 

In CHIME ABM V1, none of the cellular landscape characteristics is 
dynamic, nor are features of the built environment such as buildings or 
roads represented. The modeled world does include hazard zones, rep
resenting geographical areas at different levels of risk, that abstractly 
simulate hurricane evacuation zones. In the simulations reported in this 
article, a single evacuation zone is defined as all locations within 
1.5 cells (approximately 9 km) from the coast. As with other components 
of the model, these aspects of the modeled world can be revised in future 
experiments. 

2.2. Modeled storm 

The CHIME ABM V1 modeled world also includes a simulated 

Fig. 1. CHIME ABM V1 NetLogo interface, including various user-adjustable parameters (left) and depiction of the modeled world (right). The image is a screenshot 
taken from a single time step during a simulation of Hurricane Charley approaching Florida, US, with historical forecasts and 3500 Citizen agents distributed ac
cording to Census data. The depiction of the modeled world includes land elevation (greyscale) and ocean (dark blue), the storm (large white tropical cyclone 
symbol) and actual storm track (hatched line), the most recent forecast of the storm track with uncertainty bars demarcating the “cone of uncertainty” (sequence of 
colored lines with asterisk at center), and agents (small colored symbols over land: blue circles ¼ citizens, red and white stars ¼ public officials, green cir
cle ¼ forecaster, yellow circles ¼ broadcasters, pink circles ¼ information aggregators; see section 2.4). 
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tropical cyclone that approaches and then (potentially) affects the model 
domain. The storm can be real or synthetic; here we simulate historical 
storms using the US National Hurricane Center’s (NHC’s) Tropical 
Cyclone Best Track data (https://www.nhc.noaa.gov/data/?#hurdat), 
which include a sequence of locations of the storm’s eye and other 
characteristics (Table 1). Future versions of the model could include 
more complex representations of the storm and associated hazards and 
impacts (e.g., areas experiencing storm surge or inland flooding, trans
portation disruptions, or power outages), which could then also influ
ence information flow and decision making. 

In this article, we perform simulations for Hurricanes Charley and 
Wilma, which made landfall in Florida in 2004 and 2005, respectively. 
These were selected to represent different types of storms (e.g., Charley 
had a small wind field for a tropical cyclone and Wilma a large wind 
field), with different tracks and forecast errors. 

2.3. Forecast information 

Along with an evolving storm, CHIME ABM simulates forecasts of the 
future state of the storm, which again can be real or synthetic. In CHIME 
ABM V1, the information in these forecasts (Table 1) is based on the 
format of the forecasts provided in NHC’s Tropical Cyclone Forecast/ 
Advisory products (Fig. 3). Each forecast typically provides predictive 

information that is valid at 12 or 24-h intervals in the future,2 with new 
forecasts typically issued every 6 hours. This means that the most cur
rent forecast information available in the model evolves with time, 
although older forecast information may still be circulating in the in
formation network of the multi-agent model. As discussed in the intro
duction and Morss et al. (2017), this is an important dynamical element 
of real-world modern weather forecast and warning systems. 

The experiments reported here use two types of forecast information: 
historical and ideal. The historical forecasts were simulated using data 
from the NHC Tropical Cyclone Forecast/Advisory products that were 
available in real time as the storm being studied approached (e.g., 
Fig. 3). The ideal forecasts simulate perfect forecast information avail
able at all lead times and were generated from the model’s representa
tion of the evolution of the actual storm. 

Along with the forecasts, the model also includes information about 
forecast uncertainty. In V1, this is represented by the NHC “cone of 
uncertainty”, which estimates uncertainty in the track forecast at 
different forecast lead times based on average errors in recent track 
forecasts (see http://www.nhc.noaa.gov/aboutcone.shtml). On 
average, tropical cyclone track forecast errors decrease as a storm ap
proaches, and so the track forecast uncertainty increases with lead time. 
A location is defined as in the cone of uncertainty if its distance from the 
eye of the storm is less than the track uncertainty for that forecast lead 
time (Fig. 1). Here, we use historical track uncertainty data from 2005, 
obtained from the NHC. Note that for the experiments in this article, the 
same cone of uncertainty is used for both historical and ideal forecast 
configurations. Future versions of the model could include more com
plex representations of hurricane forecast information, including more 
detailed spatial representations of the forecast of the storm, forecasts of 
storm-related hazards and impacts (e.g., areas at risk from storm surge 
or inland flooding or power outages), and associated uncertainties. 

In the multi-agent model, agents extract several variables from the 
forecast information for use in the risk assessments discussed in section 
2.4. They search the forecast information to identify their anticipated 
closest distance to storm track (smallest distance between their location 
and the forecasted trajectory of the storm’s eye, not considering the cone 
of uncertainty). They identify the anticipated time of storm arrival (the 

Fig. 2. Overview of the major components of CHIME 
ABM V1 and their interactions. The black arrows de
pict information flow within a Citizen-agent’s deci
sion module; the solid black arrows represent 
information flow within the module at a single time 
step and the dashed black arrow represents informa
tion retained by a Citizen agent for use at a subse
quent time step. The red arrows represent information 
flow through a Citizen-agent’s social and information 
network, and the blue arrows represent other types of 
information flow within the modeling laboratory.   

Table 1 
Representations of the evolving storm and evolving forecast information in 
CHIME ABM V1 (see sections 2.2, 2.3). Not all of the data shown are used in the 
current version, but they were retained for potential use in future versions. 
Consistent with the wind speeds in the NHC data, winds are discussed here in the 
unit knots (nautical miles per hour, equivalent to approximately 1.15 mph or 
1.85 km/h).  

Storm Characteristics (typically 
updated every 6 hours) 

Forecast Information (updated forecasts 
typically issued every 6 hours) 

Geographic coordinates 
(representing location of 
hurricane eye) 

Forecasted geographic coordinates (location 
of eye), typically available at 12-24-h 
intervals into the future 

Maximum sustained winds 
(representing hurricane intensity) 

Forecasted maximum sustained winds, at 
same forecast times as geographic 
coordinates 

Radius of 64, 50, and 34 knot wind 
speeds in each of 4 quadrants 

Forecasted radius of 64 and 34 knot winds in 
each of 4 quadrants, at same forecast times as 
geographic coordinates 

Minimum central barometric 
pressure   

2 The difference between the forecast valid time and the issuance time is 
referred to as “lead time”; for example, in the NHC forecast product shown in 
Fig. 3, forecasts are provided at 9, 21, 33, 45, and 69 hour lead times (as well as 
93 and 117 hour lead times, not shown in the figure). 

J. Watts et al.                                                                                                                                                                                                                                    

https://www.nhc.noaa.gov/data/?#hurdat
http://www.nhc.noaa.gov/aboutcone.shtml


Environmental Modelling and Software 122 (2019) 104524

5

forecast time corresponding to the anticipated closest distance to storm 
track), and they use this to calculate the anticipated time until storm 
arrival (time until the storm’s eye is anticipated to arrive at their loca
tion). They also extract the forecasted maximum sustained winds at the 
anticipated time of storm arrival, which is referred to as the anticipated 
storm intensity at arrival. 

2.4. Multi-agent model of hazard information flow and decision making 

The multi-agent model of hazard information flow and decision 
making was designed to represent key elements of modern US weather 
forecast, warning, and response systems, specifically for hurricanes (e. 
g., Gladwin et al., 2007; Demuth et al., 2012; Bostrom et al., 2016), with 
features that are sufficiently general that the model could readily be 
adapted for other types of hazardous weather (e.g., Parker and Fordham, 
1996; Brotzge and Donner, 2013; Morss et al., 2015). It includes five 
types (or breeds, in NetLogo) of agents: weather forecasters who initiate 
forecast information; media broadcasters who adapt and communicate 

information; other media aggregators and communicators; public offi
cials who provide protective action recommendations; and citizens 
(members of the public) who collect and share information, assess risks, 
and make protective decisions. Given the goals of our research, the 
Citizen agents and their decision-making processes are more complex 
than the other agents. The other agent breeds are purposefully simple in 
CHIME ABM V1, but their roles can be expanded in the future. 

An overview of each of the agent breeds is provided in Table 2, and 
each is described further below. More detailed descriptions of the 
agents’ rules and algorithms can be found in the supporting documen
tation for the model. 

2.4.1. Forecaster agent 
Forecaster agents function as weather forecasters (modeled after, e. 

g., the US National Weather Service’s NHC) who provide forecast in
formation about the hazard. In CHIME ABM V1, there is one Forecaster, 
and its only job is to publish new forecast information (including un
certainty estimates) as it is updated, for use by other agents (Tables 2 
and 3). 

In the simulations shown here, the Forecaster runs every time step. 
Although the Forecaster has no need for a physical presence in the 
current implementation, it is placed at a random location in the model’s 
populated geographic domain (represented by a small green circle, e.g., 
in Fig. 1). Forecaster agents were given a location to provide a starting 
point for potential future versions of the model in which different 
forecasters provide forecast information for different regions, as in the 
real world. 

Fig. 3. Excerpt from an example Tropical Cyclone Forecast/Advisory product 
issued by the NHC as Charley approached the US in 2004. This text is part of a 
single NHC forecast product issued at 15:00 UTC on August 11, 2014. It is 
depicted in the original NHC product format, with { … } indicating text not 
shown here. The full product includes forecasts out to 12:00 UTC on August 16, 
2014 (117 hours). The information annotated in red represents the current state 
of the storm; similar information is available in the NHC’s Tropical Cyclone Best 
Track data and is used in the model’s representation of the storm (left-hand 
column of Table 1). The information annotated in blue is extracted into the 
model’s representation of the historical forecast information (right-hand col
umn of Table 1) for the forecast issued at 15:00 UTC on August 11, 2014. 
Similar forecast products issued by the NHC at earlier and later times are used 
to extract the full set of historical forecasts for the 5-day time period simulated 
for the Hurricane Charley experiments in this article. 

Table 2 
Overview of the five agent breeds in CHIME ABM V1 and their implementation 
in the experiments discussed in this article.  

Breed Count Behaviors Geographic 
distribution 

Temporal 
scheduling 

Forecaster 1 Publishes forecast 
and forecast 
uncertainty 
information into 
model world 

Random Active at each 
time step (every 
hour) 

Broadcaster 10 Republishes 
forecast 
information from 
Forecaster, 
reorganized and 
temporally 
interpolated for use 
by other agents 

Random Each Broadcaster 
is active at each 
time step 

Aggregator 10 Same as 
Broadcasters 

Random Each Aggregator 
has a 1 in 3 
(random) chance 
of being active at 
each time step 

Public 
Official 

67 Interprets forecasts 
and assesses risk to 
decide if and when 
to issue evacuation 
orders 

One in each 
of the 67 
Florida 
counties 

Each Official is 
active at each 
time step 

Citizen (Cit- 
ag) 

1000 Collects forecasts 
from various 
sources (media, 
other Cit-ags, own 
memory) and other 
information 
(evacuation orders, 
environmental 
cues); processes 
forecasts; shares 
forecasts; assesses 
risk; and makes 
decisions about 
evacuation and 
other actions 

Random or 
realistic 

Each Cit-ag is 
active every 1–32 
time steps; 
scheduling is set 
randomly at 
initialization and 
is changed if the 
Cit-ag decides to 
increase or 
decrease 
information 
collection 
frequency  
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2.4.2. Broadcaster agents 
Broadcaster agents simulate the role of traditional media, such as 

television, in communicating hazard information to a broad audience 
(Demuth et al., 2012); in CHIME ABM V1, their primary role is to convey 
forecast information to the Public Official and Citizen agents. Without 
changing the content of the information, Broadcasters reorganize the 
forecasts published by the Forecaster into a format that can be more 
readily used by the Public Official and Citizen agents (Tables 2 and 3). 
They also linearly interpolate the forecasts from the temporal resolution 
available in the NHC-provided information (e.g., 12- or 24-h time steps 
as shown in Fig. 3) to 1-h time steps, which facilitates interpretation by 
Public Official and Citizen agents. 

In the simulations shown here, there are 10 Broadcasters, and each 
Broadcaster runs at each time step. Although Broadcasters have no need 
for a physical presence in the current implementation, they are placed at 
random locations in the populated domain (represented by small yellow 
circles). Broadcasters were given locations for potential use in future 
versions, e.g., to represent major media markets. In order to simplify 
possible influences on evacuation patterns for the experiments reported 
here, the Broadcasters were constrained not to modify the forecast 
content nor to potentially introduce delays in providing updated fore
cast information to other agents; this can also be modified in future 
experiments. 

2.4.3. Information Aggregator agents 
Aggregator agents are intended to simulate the roles of “new media” 

information actors who access, process, and redistribute hazard 

information, e.g., on the internet or mobile devices. These agents were 
included in the model to provide the ability to represent the ways in 
which many people currently obtain and combine information from 
multiple types of sources – a key feature of the modern information 
environment that we aim to explore (Dow and Cutter, 2000; Gladwin 
et al., 2007; Morss et al., 2017). 

In the simulations shown here, Aggregators function identically to 
Broadcasters, with two exceptions: they do not run at every time step 
(Table 2), and they do not provide information to Public Official agents. 
The random activation was designed to simulate internet-based sources 
who may aggregate and communicate information intermittently, 
compared to traditional media actors who tend to communicate on a 
more regular schedule. In future versions of CHIME ABM, Aggregators 
can be revised to play more complex information roles similar to those of 
real-world internet-based information sources, and experiments can be 
run to investigate the influence of these different types of sources 
creating and conveying information in different ways. 

The simulations shown here have 10 Aggregators, placed at random 
locations in the populated model domain and depicted as small pink 
circles. As with the Broadcasters, Aggregators were given a physical 
location to allow agents to have location-based preferences for Aggre
gator information sources in future experiments, but this location does 
not influence the model’s behavior in the current version. 

2.4.4. Public Official agents 
Public Official agents (also referred to as Officials) simulate gov

ernment personnel who help protect the public and inform people about 
protective actions (Demuth et al., 2012). In V1, Officials’ only role is to 
decide whether to issue evacuation orders, which are conveyed to Citi
zen agents for use in their risk assessment (section 2.4.5). 

For the simulations shown here, one Official is located in each 
county, at the county seat, and only Officials located in coastal counties 
(those exposed directly to the ocean) can issue evacuation orders. This is 
modeled after real-world hurricane evacuation orders, which are typi
cally issued for areas at risk of inundation from storm surge, i.e., areas 
near the coast. As a simulation evolves, the modeled Officials decide 
whether and when to issue evacuation orders based on their assessment 
of the risk that the hurricane poses to coastal locations in their county, 
using updated forecast information obtained from Broadcasters. 

At each time step, Officials assess risk by obtaining and processing 
forecast information and comparing it to three global parameters whose 
values are set at initialization: earliest, latest, and wind-threshold 
(Table 3). At each coastal cell, three criteria are evaluated: 1) is the 
anticipated closest distance to storm track within the cone of uncertainty 
(in other words, less than the track forecast uncertainty corresponding to 
that lead time)? 2) is the anticipated time until storm arrival within the 
lead time window defined by earliest and latest? and 3) is the anticipated 
storm intensity at arrival greater than wind-threshold? If all three criteria 
are met at any of its coastal cells, an Official will decide to issue an 
evacuation order (set orders from 0 to 1), which becomes active at that 
time step and remains active for the remainder of the simulation. 

The track cone of uncertainty is used here as a proxy for areas that 
warrant evacuation orders because at lead times of more than a day or 
two, location-specific storm surge predictions have low skill (Fossell 
et al., 2017). Thus, the storm track and associated uncertainty is a 
reasonable first-order approximation of coastal areas at risk of signifi
cant impacts. Future versions of the model could include more complex 
estimates of storm surge risk at different locations based, e.g., on more 
complex representations of coastal geography and topography and/or 
translation of the atmospheric hurricane forecasts into forecasts of surge 
inundation. 

In all of the simulations shown here, latest is set to 0 hours, which 
means that Officials can issue evacuation orders up until the storm’s eye 
arrives at its county’s coastline. The values of wind-threshold used in 
these simulations are equivalent to high Category 2 – low Category 4 
winds on the Saffir-Simpson Hurricane Winds Scale (https://www.nhc. 

Table 3 
Key variables for the Forecaster, Broadcaster, Aggregator, and Public Official 
agent breeds and their implementation in the experiments discussed in this 
article. In V1, the static variables listed in this table are global (apply to all 
agents of that breed) and set at initialization.  

Breed Variable 
(s) 

Type Definition Notes 

Forecaster forecast Dynamic Imported forecast 
information from 
data file 

Historical (from 
NHC) or ideal 

Broadcaster broadcast Dynamic Agent’s 
representation of the 
forecast 

Reorganized and 
temporally 
interpolated 
from forecast 

Aggregator info Dynamic Agent’s 
representation of the 
forecast 

Reorganized and 
temporally 
interpolated 
from forecast 

Public 
Official 

wind- 
threshold 

Static Anticipated storm 
intensity (maximum 
sustained wind 
speed) over which an 
Official will issue an 
evacuation order 

93-116 knots for 
simulations 
shown here  

earliest Static Earliest lead time at 
which an Official can 
issue an evacuation 
order (based on the 
anticipated time until 
storm arrival at 
coastal locations in 
its county) 

0–54 hours for 
simulations 
shown here  

latest Static Latest lead time at 
which an Official can 
issue an evacuation 
order (based on the 
anticipated time until 
storm arrival at 
coastal locations in 
its county) 

0 hours for all 
simulations 
shown here  

orders Dynamic 1 if that Official has 
issued an evacuation 
order; 0 if not 

Boolean  
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noaa.gov/aboutsshws.php?). 
Officials are depicted in Fig. 1 as small red stars, which turn white if 

that Official issues an evacuation order. As with the Broadcasters and 
Aggregators, we chose to make the Officials’ behaviors relatively simple 
here to simplify interpreting the results of these initial experiments; the 
Officials’ algorithms could be made more complex or their roles 
expanded in the future. 

2.4.5. Citizen agents 
Citizen agents (Cit-ags) model members of the public (or public 

households) who dynamically collect and process information about a 
potential hazard, assess the risk posed by the hazard, and decide 
whether the risk is sufficient to warrant changing their behaviors 
(Fig. 2). Cit-ags’ information sources include other agents (connected 
through their social and information network, described in section 
2.4.6) and the model’s physical environment. The Cit-ags also serve as 
disseminators by relaying information to other Cit-ags. 

The design of the Cit-ag algorithms was adapted from conceptual 
models of protective decision-making for hazards, such as the Protective 
Action Decision Model (PADM; Lindell and Perry, 2004, 2012), as well 
as findings from empirical research by members of our project team and 
other scholars on information flow and protective decision making for 
hurricanes (e.g., Baker, 1991; Dow and Cutter, 2000; Gladwin et al., 
2001; Gladwin et al., 2007; Dash and Gladwin, 2007; Morss and Hayden, 
2010; Lazo et al., 2015; Huang et al., 2016a, Morss et al., 2016a, Demuth 
et al., 2016; Cuite et al., 2017; Bostrom et al., 2018; Demuth et al., 2018; 
and references therein) and for other weather-related hazards (e.g., 
Mileti and Sorensen, 1990; Sorensen, 2000; Brotzge and Donner, 2013; 
Ruin et al., 2014; Lazrus et al., 2016; Morss et al., 2016b). One challenge 
of this project was to translate parsimonious theoretical models, such as 
that provided by PADM, and the more detailed, but often incomplete, 
information available from empirical analyses into simple yet suffi
ciently specific instructions for agents. To do so, we synthesized the 
relevant literature to identify key behavioral features to implement 
given our research goals, informed by the cross-disciplinary expertise 
within our research team. Existing research indicates that, in general, 
people evacuate when they believe that an approaching hurricane poses 
a risk to their own or their family’s safety, and that different people can 
both perceive risk differently and have different evacuation barriers or 
constraints (e.g., Baker, 1991; Gladwin et al., 2001; Dash and Gladwin, 
2007; Lazo et al., 2015). Thus, we formulated the Cit-ag module in terms 
of combining and translating information obtained from multiple sour
ces into a risk assessment, which is then compared with decision 
thresholds that vary across the Cit-ag population. 

At model initialization, CHIME ABM V1 has two options for 
geographically distributing Cit-ags: random and realistic. The realistic 
population simulations distribute Cit-ags according to the real-world 
population density (based on Census data, here from the year 2000). 
Along with location, each Cit-ag is assigned multiple variables that in
fluence its hazard information collection, information processing, risk 
assessment, and decisions (Table 4). These variables were designed to 
capture the real-world heterogeneity among members of the public in 
factors such as interest in and access to hazard information, social and 
information connectedness, trust in information sources, risk percep
tions, and interest in and capacity for evacuating and taking other 
protective actions. 

Values for these variables are assigned individually to each Cit-ag at 
initialization and do not change during a simulation, except for the 
variable that controls scheduling when the Cit-ag is active (feedback1). 
This parameter can change if, during an active time step, a Cit-ag’s risk 
assessment is sufficiently high or low that it decides to increase or 
decrease its information collection frequency. Cit-ags check for infor
mation on average every 12 hours towards the beginning of a simula
tion, until they assess that they may be at risk, at which point they begin 
to run their algorithms more frequently but never more often than the 
hourly time-step of the model. If they assess that they are at low risk, 

Table 4 
Key variables for Cit-ags and their implementation in the experiments discussed 
in this article. All variables are local to each Cit-ag, in other words, vary across 
the Cit-ag population.  

Variable Type Definition Notes 

network-list Static List of other Cit-ags in Cit- 
ag’s social and information 
network 

See section 2.4.6 

broadcaster- 
list 

Static List of Broadcasters in Cit- 
ag’s social and information 
network 

Random subset of 
Broadcasters (section 
2.4.6) 

aggregator- 
list 

Static List of Aggregators in Cit- 
ag’s social and information 
network 

Random subset of 
Aggregators (section 
2.4.6) 

trust-score Static Cit-ag’s trust in each 
source of information 
(Broadcasters, 
Aggregators, other Cit-ags) 
in its social and 
information network 

For each source, random 
between 0 and 1 

self-trust Static Cit-ag’s trust in its own 
previous interpretation of 
the forecast (memory) 

Random between 0.6 and 
1 

trust- 
authority? 

Static Cit-ag’s trust in 
information from Officials, 
used to weight evacuation 
orders 

Random between 0 and 1 

evac_zone Static Cit-ag’s representation of 
whether it lives in an 
evacuation zone 

Evacuation zone is 
defined as locations 1.5 
grid cells or less from the 
coast; each Cit-ag has a 1 
in 5 chance (random) of 
incorrectly determining 
its zone 

risk-life Static Cit-ag’s threshold for risk 
to life; if risk-estimate is 
above this threshold, the 
agent will decide to 
evacuate 

Random-normal with 
mean 14, std. dev. 2 

risk-property Static Cit-ag’s threshold for risk 
to concerns other than life 
(e.g., property); if risk- 
estimate is above this 
threshold, the agent will 
decide to take other (non- 
evacuation) protective 
actions 

Random-normal with 
mean 0.7*risk-life, std. 
dev. 0.5 

info-up Static Cit-ag’s threshold for 
increasing frequency of 
information collection; if 
risk-estimate is above this 
threshold, the agent will 
decide to collect 
information more 
frequently (decrease 
feedback1) 

Random-normal with 
mean 0.4*risk-life, std. 
dev. 0.5 

info-down Static Cit-ag’s risk threshold for 
decreasing frequency of 
information collection; if 
risk-estimate is below this 
threshold, the agent will 
decide to collect 
information less 
frequently (increase 
feedback1) 

Random-normal with 
mean 0.1*risk-life, std. 
dev. 0.5 

feedback1 Dynamic Number of time steps 
before Cit-ag’s next active 
time 

Integer; set at 
initialization to random- 
normal with mean 12, 
std. dev. 2; changes if Cit- 
ag decides to increase or 
decrease information 
collection frequency; min 
1, max 32 

env-cues Dynamic 1 if Cit-ag’s location is 
currently experiencing 
gale-force (34-knot) or 
greater winds, based on 

Boolean 

(continued on next page) 
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they increase the interval between active time steps. This dynamic 
scheduling for individual Cit-ags was designed to represent the ways 
that real people may become more (or less) attuned to their physical and 
informational environment as a hazard threat evolves (Mileti and Sor
ensen, 1990; Lee et al., 2009; Sherman-Morris et al., 2011; Lindell and 
Perry, 2012; Morss et al., 2017; Demuth et al., 2018). 

At each time step when a Cit-ag is active, it executes four algorithms: 
1) collect hazard-related information, 2) sort and process that infor
mation, 3) use the information to assess risk, 4) decide whether to 
change its information collection frequency, evacuate, or take other (e. 
g., property-protective) action (Fig. 2). An overview of each of these 
algorithms is below; additional details can be found in the supporting 
documentation. 

A Cit-ag collects information by querying: a) the Official agent in its 
network about whether an evacuation order has been issued, b) its 

environment about whether its location is currently experiencing winds 
of 34 knots or greater (the minimum threshold for a tropical storm), c) 
Broadcasters and Aggregators in its media network for their forecast 
information, d) other Cit-ags in its peer network for their forecast in
formation,3 and e) its memory for its own most recent forecast inter
pretation. The first four (a-d) represent several of the major external 
sources of information that members of the public use in hurricane risk 
assessments and decision making: evacuation orders, physical environ
mental cues, and forecasts from professional and social sources (e.g., 
Dow and Cutter 1998; Dash and Gladwin, 2007; Morss and Hayden, 
2010; Petrolia and Bhattacharjee, 2010; Lindell and Perry, 2012; 
Demuth et al., 2018). The last (e) represents people’s tendencies to use 
new information (such as a newly accessed forecast) to update previous 
interpretations. 

The Cit-ag then selects a random subset of the collected forecast 
information to process and combines that information, weighted by its 
trust in each of the information sources, to generate its own updated 
forecast interpretation. This forecast interpretation is saved into the Cit- 
ag’s memory for use the next time it seeks information, and it is also now 
available to other linked Cit-ags in the social and information network. 

Next, the Cit-ag assesses its risk (Table 5). It evaluates its risk based 
on forecast information using the equation: 

risk ​ function ​ ¼ ​ H*e�
ðtime� CÞ2

2*σ2 ; (1)  

where time is time until storm arrival, H is the peak height of the curve, 
and C and σ are random variables defined in Table 4. An example risk 
function is shown in Fig. 4. H is a function of the Cit-ag’s representation 
of whether it lives in an evacuation zone, its interpretation of the fore
cast, and the track forecast uncertainty (see full model description for 
details). Functionally, H increases when the Cit-ag thinks that it is in an 
evacuation zone, that the storm intensity at arrival will be higher, and 
that it is in the cone of uncertainty (or, if not in the cone of uncertainty, 
that its closest distance to storm track is greater relative to the track 
forecast uncertainty at time until arrival). This formulation was devel
oped based on previous and concurrent work indicating that these are 
important factors influencing how people interpret hurricane forecasts 
to evaluate risk (e.g., Dow and Cutter 1998, 2000; Gladwin et al., 2001; 
Zhang et al., 2007; Dash and Gladwin, 2007; Morss and Hayden, 2010; 
Petrolia and Bhattacharjee, 2010; Huang et al., 2016a; Morss et al., 
2016a; Bostrom et al., 2018). 

Table 4 (continued ) 

Variable Type Definition Notes 

the current characteristics 
of the storm; 0 if not 

interp Dynamic Cit-ag’s own 
interpretation of the 
forecast 

Output of Cig-ag’s 
process information 
algorithm (section 2.4.5) 

memory Dynamic Cit-ag’s previous 
interpretation of the 
forecast (from the last time 
step it was active) 

Stored previous value of 
interp 

C Dynamic time until storm arrival at 
which the Cit-ag’s risk 
function based on forecast 
information (eq. (1),  
Fig. 5) peaks 

Random with mean 36, 
std. dev. 3; reset every 
run of the Cit-ag’s 
algorithms 

σ Dynamic Width of the Cit-ag’s risk 
function based on forecast 
information (eq. (1),  
Fig. 5), representing how 
sensitive the Cit-ag’s risk 
assessment is to the 
difference between 
anticipated time of storm 
arrival and C 

Random with mean 24, 
std. dev. 12; reset every 
run of the Cit-ag’s 
algorithms 

risk-estimate Dynamic Cit-ag’s current 
assessment of risk, based 
on forecast information 
and, if present, evacuation 
orders and environmental 
cues 

See Table 5 and section 
2.4.5  

Table 5 
Overview of the Cit-ag risk assessment algorithm.  

Variable Definition 

Cit-ag’s assessment of risk based on 
forecast information 

Calculated using eq. (1), with time ¼ Cit-ag’s 
anticipated time of storm arrival 

Error in Cit-ag’s risk assessment Random with mean 0, std. dev. 0.5; set every 
run of the Cit-ag’s algorithms 

Cit-ag’s assessment of risk based on 
evacuation orders, if issued 

If Official nearest to Cit-ag has issued 
evacuation orders (orders ¼ 1): set to 
6*trust_authority? if Cit-ag believes it is in an 
evacuation zone (evac_zone ¼ 1), 
2.4*trust_authority? if not; 0 otherwise 

Cit-ag’s assessment of risk based on 
environmental cues, if present 

If the Cit-ag’s location is exposed to > 34 knot 
(tropical-storm force) winds based on the 
current storm conditions (env-cues ¼ 1): set to 
3; 0 otherwise 

risk-estimate, Cit-ag’s final 
assessment of risk 

Sum of the above 4 variables; passed to Cit- 
ag’s decision-making algorithm  

Fig. 4. Example time-sensitive risk function calculated by each Cit-ag based on 
its current forecast interpretation, using eq. (1). The example shown uses a 
typical value for H and mean values for C and σ (Table 4). 

3 Cit-ags make information available to other Cit-ags at all time steps, not 
only when they are active. 

J. Watts et al.                                                                                                                                                                                                                                    



Environmental Modelling and Software 122 (2019) 104524

9

The value of eq. (1) at the Cit-ag’s anticipated time until storm 
arrival then becomes the Cit-ag’s risk assessment based on forecast in
formation. As shown in Fig. 4, a Cit-ag assesses higher risk when H is 
greater and when the anticipated time until arrival is closer to C, 
modulated by σσ. This formulation and the values of C and σ were 
selected to abstractly represent heterogeneous public preferences for 
evacuation timing, with most members of the public evacuating between 
12 and 72 hours in advance of landfall, depending on the situation 
(Lindell et al., 2005; Gudishala and Wilmot, 2010; Czajkowski, 2011; 
Wu et al., 2012; Huang et al., 2016b).4 

The Cit-ag’s final risk assessment, risk-estimate, is calculated by 
adding the risk assessment based on forecast information, a small 
amount of random error, and factors based on evacuation orders and 
environmental cues (if present), as summarized in Table 5. Evacuation 
orders are given greater weight if the Cit-ag has greater trust in Officials 
and if it believes it is in an evacuation zone (e.g., Mileti and Sorensen, 
1990; Gladwin et al., 2001; Cuite et al., 2017; Thompson et al., 2017). In 
the current formulation, the presence of environmental cues adds a 
constant value to the risk assessment. 

Finally, the Cit-ag decides whether and how to modify its behaviors 
by comparing its final risk assessment with the risk thresholds in Table 4. 
Specifically, risk-estimate values greater than risk-life, risk-property, and 
info-up trigger the Cit-ag to decide to evacuate, take other protective 
action,5 and increase its information collection frequency (decrease 
feedback1), respectively. If risk-estimate is less than info-down, the Cit-ag 
decreases its information collection frequency (increases feedback1). If 
the Cit-ag decides to evacuate, it will no longer run its risk assessment 
and decision algorithms at subsequent time steps; however, it will 
continue to collect and interpret forecast information according to its 
schedule and to make its evolving forecast interpretation available to 
other Cit-ags in its peer network. 

At initialization, each Cit-ag is visually depicted by a small blue circle 
(Fig. 1). If a Cit-ag decides to take a non-evacuation protective action, its 
color changes to green, and then to orange if it decides to evacuate. 

One important simplification of the Cit-ags’ algorithms in CHIME 
ABM V1 compared to the real world is that Cit-ags do not share or 
remember information other than their interpretation of the forecast. 
Another is that they do not consider social cues such as observations of 
others’ protective behaviors. Although these processes are known to 
influence people’s hazard-related risk assessments and behaviors (e.g., 
Mileti and Sorensen, 1990; Dash and Gladwin, 2007; Taylor et al., 2009; 
Lindell and Perry, 2012; Demuth et al., 2018), we chose not to include 
them in V1 because doing so would add free parameters and dynamics, 
complicating interpretation of results from the experiments. Such fea
tures could be added in future model versions to explore additional 
system dynamics. 

2.4.6. Citizen-agent social and information network 
Information sharing among agents in CHIME ABM is implemented 

through a social and information network that connects Cit-ags with 
each other and with other agent breeds. To support interpretation of 
other aspects of the system’s dynamics, the network structure used here 
was designed to capture some aspects of real social and information 
networks, while also being relatively simple. The network changes from 
simulation to simulation, but in the current model formulation, it is 
static during a simulation. In addition, all links between Cit-ags are non- 
directional, such that information can flow both ways. This network 
formulation can be extended in complexity in the future or dynamic 
elements added. 

In the experiments conducted here, each Cit-ag selects a random- 
sized, randomly selected subset of Broadcasters and Aggregators to 
include in its network. Each Cit-ag is also connected with the 
geographically closest Official. 

The peer network builds connections between Cit-ags using two al
gorithms. First, a standard preferential attachment routine is run that 
creates a relatively small number of highly connected nodes in the 
network, in other words, a scale-free social network. This type of 
network is typically sparser than real social networks, and real social 
networks often exhibit transitivity. Thus, a second algorithm is then run 
which makes additional connections among Cit-ags to complete triads. 

An example peer social and information network created using these 
algorithms is depicted in Fig. 5. Additional detail about the network- 
building algorithms can be found in the supporting model 
documentation. 

3. Experimental methodology and data analysis 

3.1. Initializing the model and running simulations 

When CHIME ABM V1 is initialized, the inputs needed to run a 
simulation are loaded, including map layers, storm information, and 
forecasts. Next, the population of agents is distributed in the modeled 
world and the agents’ variables are initialized. Running a simulation 
starts the clock and triggers the storm and forecasts to evolve and every 
agent to run breed-specific instructions according to its schedule. As the 
model runs, key variables are stored, and the depiction on the model 
interface is updated. At the end of each simulation, relevant data are 
output for further analysis. To run large numbers of simulations in 
parallel, we used the NetLogo Behaviorspace tool. 

3.2. Experimental design 

The experiments shown in this article begin with a set of model pa
rameters that produced quasi-realistic behaviors of interest, and then 
systematically modify those parameters to explore key model behaviors 
and sensitivities. Because CHIME ABM includes a number of stochastic 
elements, it can exhibit significant run-to-run variability. Thus, we ran 
multiple repetitions for each model configuration and aggregated results 
across these simulations. 

Table 6 provides an overview of the different sets of experiments 

Fig. 5. Example Citizen-agent peer social and information network (section 
2.4.6), for a run with 1250 Cit-ags (blue circles) distributed geographically 
according to Census data. The connections between Cit-ags are depicted with 
yellow lines. 

4 Note that CHIME ABM V1 does not simulate the fact that in the real world, 
people tend to evacuate during daylight hours. This diurnal cycle in evacuation 
timing would be important to add if the model were used to examine issues 
such as travel demand and evacuation routing.  

5 This is modeled as a proxy for non-evacuation protective actions such as 
boarding windows, protecting other property, or gathering supplies, which 
people typically engage in at lower risk thresholds than evacuation. 
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reported in this article. The first set of results, shown in section 4.1, is 
from 100 simulations for Hurricane Charley with random geographical 
distribution of Cit-ags and ideal forecasts. This configuration was 
selected as a starting point for the experiments to minimize the 
complicating effects of non-uniform population distribution, forecast 
errors, and evolving forecast information when interpreting the results. 
We ran these initial experiments with Charley because, unlike Wilma, 
the full diameter of Charley’s > 34 knot winds remained over land as the 
storm crossed Florida, and so the model’s land domain encompasses 
more of the highest-impact zones discussed in section 3.3. 

The next two sets of experiments, shown in sections 4.2 and 4.3, 
investigated the sensitivity of the model’s behavior to key parameters in 
the Cit-ag and Official agent algorithms, respectively. For the experi
ments varying the Cit-ags’ information weightings, we ran 100 simula
tions for each combination of the information weightings shown in the 
second Settings column in Table 6 (729 configurations), for a total of 
72,900 simulations.6 For the experiments varying the timing of Officials’ 
evacuation orders, we shifted the earliest lead time at which Officials 
could issue evacuation orders between 54 hours and 0 hours prior to 
anticipated storm arrival, as shown in Table 6, and ran 100 simulations 
for each of the 10 configurations. 

We then examined the effects of changing the geographical distri
bution of Cit-ags from random to realistic, holding all other settings 
constant (Table 6). For this set of experiments, with only two model 
configurations, we ran 1000 simulations per configuration (section 4.4). 

Finally, we explored the evacuation patterns produced by the model 
when the ideal forecasts are changed to historical forecasts, and when 
the storm is changed from Charley to Wilma (section 4.5). As shown in 
Table 6, all other settings were kept constant as in previous experiments, 
except that wind-threshold was adjusted so that each of the configura
tions had, on average, similar numbers of Officials issuing evacuation 
orders. Evacuation orders are an important driver of evacuation de
cisions in the model, and so this modification removes some of the 
variability between otherwise parallel scenarios while still allowing the 

Officials to respond to forecast information.7 For each of the four con
figurations, we ran 1000 simulations. 

3.3. Data analysis 

To facilitate comparing evacuation patterns quantitatively across 
simulations, CHIME ABM V1 tracks Cit-ag decisions within multiple 
impact zones, designed as first-order approximations of areas likely to 
experience different levels of impacts from the storm. Here, we use six 
impact zones, defined by whether a location: a) is coastal (in an evac
uation zone, 1.5 grid cells or less from the ocean) or inland, and b) ex
periences maximum storm winds during the simulation that are greater 
than 64 knots (hurricane-force), between 34 and 64 knots (tropical- 
storm-force), or less than 34 knots. The storm tracks and six impact 
zones for the Hurricane Charley and Wilma simulations are shown in 
Fig. 6. 

The primary model output data analyzed here are the percent of Cit- 
ags in each impact zone that decided to evacuate in each simulation. 
These were analyzed across the simulations run for each model config
uration by examining statistics such as the mean and inter-simulation 
variability. We also examined Officials’ evacuation order decisions, 
more detailed spatial and temporal patterns in Cit-ags’ decisions, and 
other aspects of the model’s behavior and outcomes. Most of the results 
are presented in summary tables or figures to provide a compact sum
mary of broad patterns, together with graphics depicting more detailed 
aspects of the model’s behavior to support more in-depth interpretations 
discussed in the text. 

4. Results 

4.1. Spatial and temporal patterns of Cit-ag evacuation decisions 

First, we examine results from simulations with the model configu
ration shown in the first Settings column in Table 6. These results pro
vide a first-order assessment that the agents in CHIME ABM are 
behaving in a structurally valid way, based on the processes included in 
the model. They also illustrate several key aspects of the model’s 
behavior, which provides a starting point for interpreting subsequent 

Table 6 
Parameter settings for the experiments shown in section 4. The parameters that were modified in each set of experiments are indicated by italics.  

Parameter Settings for simulations 
with “standard” 
parameter set (section 
4.1) 

Settings for experiments 
varying Cit-ags’ 
information weighting 
(section 4.2) 

Settings for experiments 
varying potential timing of 
evacuation orders (section 
4.3) 

Settings for experiments 
varying geographic 
distribution of Cit-ag 
population (section 4.4) 

Settings for experiments 
varying the storm and 
forecasts (section 4.5) 

Storm Charley Charley Charley Charley Charley, Wilma 
Forecasts Ideal Ideal Ideal Ideal Ideal, Historical 
Cit-ag population 

distribution 
Random Random Random Random, Realistic Realistic 

Cit-ags’ weight of forecast 
information 

1 0, 0.25, 0.5, 0.75, 1, 1.25, 
1.5, 1.75, 2 

1 1 1 

Cit-ags’ weight of 
evacuation orders 

1 0, 0.25, 0.5, 0.75, 1, 1.5, 2, 
3, 4 

1 1 1 

Cit-ags’ weight of 
environmental cues 

1 0, 0.25, 0.5, 0.75, 1, 2, 3, 
4.5, 6 

1 1 1 

earliest possible issuance of 
evacuation orders (hours 
of lead time) 

54 54 54, 48, 42, 36, 30, 24, 18, 
12, 6, 0 

54 54 

wind-threshold over which 
Officials will issue 
evacuation orders 
(knots) 

116 116 116 116 116 (Charley Ideal), 
95 (Charley Historical), 
108.75 (Wilma Ideal), 93 
(Wilma Historical) 

Repetitions per 
configuration 

100 100 100 1000 1000  

6 The values of the weightings for the different types of information are 
relative scales and do not have any independent meaning. The maximum 
weightings used in the sensitivity tests were selected based on the increase in 
weighting of each type of information that was required to significantly affect 
evacuation rates. 

7 Note that because the storm tracks and forecasts are different in the four 
configurations, different sets of Officials may issue evacuation orders. 
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results. 
The top row of Table 7 summarizes Cit-ags’ evacuation decisions in 

the six impact zones, averaged across the 100 simulations. To illustrate 
spatial patterns in the model’s output in greater detail, Fig. 7 presents a 
map of Cit-ag evacuation decisions for a single (randomly selected) 
completed simulation. Note that random placement of the Cit-ags 
combined with Charley’s small size results in few Cit-ags within the 
coastal >64 knot impact zone. 

These results show several patterns that are similar to real hurricane 
evacuation behaviors. First, Cit-ags’ evacuation rates are higher near the 
coasts (in evacuation zones) than inland. They are also higher in areas 
closer to the storm’s track. This pattern arises because, with the ideal 
forecasts in this simulation, the Officials in coastal counties that will 
experience strong winds issue evacuation orders shortly after their 
evacuation order window opens, and Cit-ags in these areas receive 
forecasts that the storm will track near their region throughout the 
simulation. Cit-ags in coastal areas are much more likely to believe they 
are in an evacuation zone, which increases their sensitivity to both 
evacuation orders and forecast information. Thus, between the evacu
ation orders, the forecast information, and the environmental cues that 
they experience as the storm approaches, many of the Cit-ags in coastal 
>34 knot impact zones decide to evacuate. 

As expected, Cit-ag evacuation rates are greater in the >34 knot 
zones than in the lower-impact <34 knot zones. Counterintuitively, 
however, modeled evacuation rates are greater in the 34–64 knot zones 
than in the higher-impact >64 knot zones. A more in-depth investigation 
indicates that this occurs because the statistics presented here average 
across the western coast of Florida, where the storm makes landfall and a 
higher percentage Cit-ags evacuate, and the eastern coast of Florida, 
where a lower percentage of Cit-ags evacuate. As shown in Fig. 6, the 
>64 knot wind area expands as the storm crosses Florida; evacuation 
statistics in the >64 knot impact zones are therefore more heavily 
weighted towards the lower evacuation rates in eastern Florida. At the 
same time, the model’s land domain fully encompasses the 34–64 knot 
and <34 knot wind zones in the western part of Florida, but not in the 
eastern part of Florida; evacuation statistics in the 34–64 knot impact 
zones are therefore more heavily weighted towards the higher evacua
tion rates in western Florida. Together, this decreases evacuation rates 
in the >64 knot zones compared to those in the 34–64 knot zones. 

As explained by Baker (1991), “evacuation rates vary from place to 
place in the same hurricane and from storm to storm in the same place” 
(p. 291), which complicates comparing the model results with 
real-world evacuation rates. Despite these limitations, this general 
pattern – evacuation rates that are highest in the highest-risk areas, 
along the coast near the storm’s track, and that decrease as one moves 
inland and away from the storm – is broadly similar to that found in 
real-world hurricane evacuations (e.g., Baker, 1991; Lindell et al., 2005; 
Morrow and Gladwin, 2005; Huang et al., 2012, 2016b). One major 
difference is that the evacuation rate in the model decreases much more 
rapidly as one moves inland than it typically does in the real world, due 
in part to the simplified formulation of the influence of coastal proximity 
on risk assessments and decisions; this could be modified in future 
versions. 

A second pattern illustrated by Table 7 and Fig. 7 is the inter-agent 
variability in Cit-ag evacuation decisions: although many Cit-ags in 
the highest-impact zones decide to evacuate, some do not, and a small 
percentage of Cit-ags who are located in low-risk areas decide to evac
uate. This is consistent with real-world hurricane evacuations, and more 
generally with the heterogeneity exhibited by real-world U.S. in
dividuals and households in hurricane evacuation decisions (e.g., Hasan 
et al., 2011; Dixon et al., 2017). In the model, this variability arises from 
the individual Cit-ags’ different values for the randomly generated 
variables in Table 4. For example, a Cit-ag in a high-risk area may decide 
not to evacuate because it has a very high value of the risk threshold 
risk-life, or because it has very low values of the trust-authority? param
eter or erroneously thinks it is not in an evacuation zone. In these sim
ulations, none of the agents misinterpret the forecasts and Cit-ags do not 
consider evacuation orders from distant Officials. Thus, Cit-ags who 
evacuate from very low-risk areas (such as the one represented by the 
white dot in northern Florida in Fig. 7) do so primarily because they 
have low values of the risk threshold for evacuation, although prefer
ences for evacuating early (when the cone of uncertainty covers a larger 
area) and other factors can play a role. 

Variability in Cit-ag behaviors can also result from more complex 
interactions among components of the model’s dynamics. For example, 
a Cit-ag in a high-risk area may not evacuate because the times at which 
it collects information (and thus receives information indicating that it is 
at high risk) do not coincide with the timing of peaks (C) in its risk 
function curve. This is more likely if a Cit-ag collects information 
infrequently (feedback1 is large and/or info-up and info-down are high) 
and has a narrow risk function curve (σ is small) when it runs the risk 
assessment algorithm. 

To illustrate temporal patterns in the model’s behavior, Fig. 8 depicts 
the timing of Cit-ag evacuation decisions in each of the six impact zones, 
averaged across the 100 simulations. These results show two peaks in 
evacuation timing: one at 30–54 hours before anticipated storm arrival, 
and a smaller bump at 0–6 hours before arrival. A small percentage of 
Cit-ags decide to evacuate prior to the issuance of evacuation orders 

Fig. 6. Map of the storm track (hatched line) and six impact zones (represented 
by different-colored randomly-distributed Cit-ags) for Hurricanes Charley 
(upper) and Wilma (lower). The six impact zones are: coastal and >64 knot 
winds (orange), coastal and 34–64 knot winds (green), coastal and <34 knot 
winds (dark blue), inland and >64 knot winds (yellow), inland and 34–64 knot 
winds (light blue), inland and <34 knot winds (white). 
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(prior to approximately 54 hours), based on their interpretations of 
forecast information. This then leads into the first peak in evacuation 
decisions, which results from Cit-ags’ use of evacuation orders combined 
with forecast information. The second peak in evacuation decisions 
occurs as the storm approaches close enough to provide Cit-ags with 
environmental cues, along with evacuation orders and forecasts. 

The first peak in evacuation timing is much larger in coastal impact 
zones than inland, because Cit-ags in coastal zones are more likely to 
both receive evacuation orders and believe they live in an evacuation 
zone (the latter of which makes them more sensitive to both forecasts 
and evacuation orders). The second peak occurs only in the >64 knot 
and 34–64 knot impact zones, because only Cit-ags in those impact zones 
receive environmental cues. The variability in when Cit-ags decide to 

evacuate arises for reasons similar to those discussed above. These 
include differences in Cit-ags’ scheduling and the timing of their risk 
function peak, as well more complex interactions such as a higher risk- 
life threshold that leads some Cit-ags to need to accumulate more in
formation indicating that they are at high risk before they decide to 
evacuate. 

4.2. Varying Citizen-agents’ weighting of different types of information 

Building on the results in section 4.1, next we investigate the effects 
of modifying Cit-ags’ weightings of the three main types of hazard in
formation they use to assess risk in CHIME ABM V1: forecast informa
tion, evacuation orders, and environmental cues (Table 6). These results 
further elucidate key aspects of the modeled system’s dynamics, and 
they provide additional insight into the roles of different types of in
formation in Cig-ags’ risk assessments and decisions. Table 7 summa
rizes Cit-ags’ evacuation decisions in the six impact zones for a subset of 
the perturbed information weightings. To examine aspects of these re
sults in greater depth, Fig. 9 depicts evacuation rates and peak evacu
ation timing for Cit-ags in the highest-impact zone, across all 729 model 
configurations, and Fig. 10 compares more detailed evacuation timing 
results for the highest-impact zone for several of the information 
weightings. 

The results in Table 7 and the overall pattern of symbol sizes in Fig. 9 
indicates that in the model’s current formulation, the Cit-ags’ risk as
sessments and decisions are more sensitive to forecast information than 
they are to evacuation orders and environmental cues. For example, 
when Cit-ags use only forecast information at its standard weighting 
(“Forecasts only” row in Table 7), approximately 16% of Cit-ags in 
coastal impact zones evacuate. In contrast, when Cit-ags use only 
evacuation orders and environmental cues at their standard weightings, 
alone or together, very few Cit-ags evacuate. In the absence of forecast 
information, Table 7 and Fig. 9 indicate that increasing the weighting of 
evacuation orders and environmental cues by a factor of 4 or more is 
needed to motivate a substantial percentage of high-impact Cit-ags to 
evacuate. 

Aspects of these model behaviors can be modified by changing the 
information weightings. However, Cit-ags’ evacuation decisions are also 
more sensitive to forecast information due to features of the different 

Table 7 
Percentage of Cit-ags deciding to evacuate in each of the six impact zones and overall, for the model configuration in the first Settings column in Table 6 and a subset of 
the model configurations in the second Settings column. For each model configuration and impact zone, the mean and standard deviation are shown, calculated across 
the 100 simulations for that model configuration. Fc ¼weighting of forecast information, Ord ¼weighting of evacuation orders, ECue ¼weighting of environmental 
cues.  

Weighting of 3 information types used in Cit-ags’ 
risk assessment algorithm 

Mean (std dev) % of Cit-ags deciding to evacuate 

Coastal >64 
knot zone 

Coastal 34–64 
knot zone 

Coastal <34 
knot zone 

Inland >64 
knot zone 

Inland 34–64 
knot zone 

Inland <34 
knot zone 

All 
zones 

“Standard” information 
weighting 

Fc ¼ 1; Ord ¼ 1; 
ECue ¼ 1 

32.4 (13.2) 44.3 (9.5) 20.4 (5.6) 1.2 (0.8) 1.4 (0.6) 1.0 (0.6) 3.9 
(0.6) 

Forecasts only Fc ¼ 1; Ord ¼ 0; 
ECue ¼ 0 

16.4 (10.1) 20.4 (7.6) 11.8 (4.9) 1.1 (0.7) 1.1 (0.6) 0.6 (0.5) 2.2 
(0.4) 

Orders only Fc ¼ 0; Ord ¼ 1; 
ECue ¼ 0 

0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 
(0.0) 

Env. cues only Fc ¼ 0; Ord ¼ 0; 
ECue ¼ 1 

0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 
(0.0) 

Forecasts þ Orders Fc ¼ 1; Ord ¼ 1; 
ECue ¼ 0 

31.4 (12.9) 45.7 (10.6) 21.1 (5.9) 1.1 (0.8) 1.5 (0.7) 1.1 (0.5) 4.0 
(0.6) 

Forecasts þ Env. Cues Fc ¼ 1; Ord ¼ 0; 
ECue ¼ 1 

18.1 (10.0) 21.5 (7.8) 11.6 (4.9) 1.1 (0.9) 1.1 (0.5) 0.5 (0.5) 2.2 
(0.4) 

Orders þ Env. Cues Fc ¼ 0; Ord ¼ 1; 
ECue ¼ 1 

0.0 (0.0) 0.04 (0.4) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 
(0.0) 

Forecasts only – maximum 
weighting 

Fc ¼ 2; Ord ¼ 0; 
ECue ¼ 0 

90.2 (9.0) 91.7 (5.2) 86.2 (4.2) 48.6 (4.1) 49.0 (2.6) 37.7 (2.6) 48.2 
(1.5) 

Orders only – maximum 
weighting 

Fc ¼ 0; Ord ¼ 4; 
ECue ¼ 0 

15.3 (9.7) 21.8 (8.2) 9.5 (3.5) 0.3 (0.5) 0.4 (0.5) 0.4 (0.5) 1.7 
(0.4) 

Env. cues only – maximum 
weighting 

Fc ¼ 0; Ord ¼ 0; 
ECue ¼ 6 

22.0 (9.6) 8.3 (4.9) 0.0 (0.0) 21.0 (3.4) 8.8 (1.5) 0.0 (0.0) 7.1 
(0.8)  

Fig. 7. Spatial pattern of Cit-ag evacuation decisions for a single CHIME ABM 
V1 simulation with random geographical distribution of Cit-ags, ideal forecasts 
for Hurricane Charley, and other parameter settings in the first Settings column 
in Table 6. Cit-ags deciding to evacuate in this simulation are color-coded ac
cording to their location in one of the six impact zones depicted in Fig. 6. Cit- 
ags deciding not to evacuate are colored gray. 
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types of information and the model’s formulation. First, forecast infor
mation is available to all Cit-ags throughout the simulation, while 
evacuation orders and environmental cues only become available to a 
subset of Cit-ags (those whose closest Official issues evacuation orders or 
who experience >34 knot winds, respectively), later in the simulation. 
Second, forecast information is more influential because Cit-ags can 
modify their information behaviors in response to the hazard risk. More 

specifically, when Cit-ags receive forecast information that begins to 
signal risk, they may decide to collect information and assess risk more 
frequently. They are then more likely to obtain information from evac
uation orders and/or environmental cues soon after it becomes avail
able, at times that are closer to the peak of their risk function. Without 
forecast information playing this role, many Cit-ags wait 12 or more 
hours between active times, which may lead to significant delays before 

Fig. 8. Histograms of percentage of Cit-ags deciding to evacuate in sequential 6-h bins as a hurricane approaches and arrives in CHIME ABM V1, for each of the six 
impact zones. Results are for the model configuration in the first Settings column in Table 6, averaged over 100 simulations. The x-axis is the Cit-ags’ anticipated time 
until the storm’s arrival at their location (equivalent to actual time until storm arrival at their location, in these runs with ideal forecasts). 

Fig. 9. Summary of how evacuation decisions for Cit- 
ags in the highest-impact zone (coastal >64 knots) 
vary with the information weightings in the Cit-ags’ 
risk assessment algorithm (second Settings column in 
Table 6). The scale on the top represents the weight of 
forecast information (0–2), the scale on the left rep
resents the weight of environmental cues (0–6), and 
the scale on the bottom represents the weight of 
evacuation orders (0–4). For each set of information 
weights, the size of the circle depicts the percentage of 
Cit-ags in the highest-impact zone deciding to evac
uate, and the color of the circle depicts the peak 
timing of Cit-ag evacuation decisions, both averaged 
over 100 simulations for each model configuration.   

Fig. 10. Histograms of percentage of Cit-ags in the coastal >64 knot impact zone deciding to evacuate in sequential 6-h bins, for 4 of the model configurations with 
different Cit-ag information weightings (second Settings column in Table 6). The panels depict results for, from left to right, the standard information weightings 
(same as the left-most panel in Fig. 8) and forecast information only, evacuation orders only, and environmental cues only, each at the maximum weight tested. 
Results are averaged over 100 simulations with random geographical distribution of Cit-ags and ideal forecasts for Hurricane Charley. 
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they obtain and process evacuation orders and environmental cues. 
In this way, the forecast information in the model helps Cit-ags 

become more attuned to the risk and access risk information more 
frequently by the time evacuation orders are issued and environmental 
cues are felt, increasing their likelihood of evacuating. Similar behaviors 
occur in the real world, in which risk information available at earlier 
stages of a hazard threat primes people to obtain and understand sub
sequent information (e.g., Mileti and Sorensen, 1990; Dash and Glad
win, 2007; Morss et al., 2017; Demuth et al., 2018). However, relatively 
little is known about how these types of behaviors influence system-level 
patterns. This illustrates how modeling laboratories such as CHIME ABM 
V1 can provide a toolkit for studying such interactions in a simplified 
context, to build understanding that can be used to interpret real-world 
information and decision dynamics (Morss et al., 2017). 

The results in Table 7 also illustrate how the influence of different 
types of information in CHIME ABM V1 varies spatially, based on how 
the spatial attributes of the information intersect with the model algo
rithms. As indicated by the “Forecasts only” and “Orders only – 
maximum weighting” rows, both forecasts and evacuation orders affect 
Cit-ag evacuations in all six impact zones. However, their influence is 
much larger in coastal zones, where Cit-ags are more likely to receive 
evacuation orders and believe they are in an evacuation zone. Within 
coastal areas, forecasts and evacuation orders have less influence farther 
from the storm’s track (in the <34 knot zone8). As indicated by the “Env. 
cues only – maximum weighting” row, on the other hand, environmental 
cues only affect evacuations in the 34–64 knot and >64 knot zones. They 
have no effect in the <34 knot zones (where Cit-ags do not receive any 
environmental cues), and they are most influential in the >64 knot 
zones (where winds are typically greater than 34 knots for a longer 
period of time than in the 34–64 knot zones). Unlike forecasts and 
evacuation orders, environmental cues have similar effects on evacua
tions in coastal and inland zones. 

The effects of varying the Cit-ag information weightings on the 
timing of Cit-ag evacuations is depicted by the colors of the symbols in 
Fig. 9 and the timing histograms in Fig. 10. When Cig-ags weight fore
cast information highly (right side of Fig. 9, second plot from left in 
Fig. 10), evacuations peak between approximately 78–30 hours before 
storm arrival. When evacuation orders are Cit-ags’ primary source of 
risk information and weighted highly (third plot from left in Fig. 10), the 
evacuation peak shifts to 24–48 hours before arrival. This occurs 
because Cit-ags have no information available to signal risk until after 
Officials’ evacuation order window opens and because Cit-ags are not 
primed by the forecasts to quickly obtain and assess this risk informa
tion. When environmental cues are Cit-ags’ primary information source 
(top left of Fig. 9, right plot in Fig. 10), evacuations peak only a few 
hours before the storm’s arrival, because this is when environmental 
cues manifest and again because Cit-ags have not been primed by earlier 
information. These results further illustrate the important role of fore
casts and evacuation orders for motivating timely protective behaviors 
in the modeled system, as in the real world. 

4.3. Varying potential timing of evacuation orders issued by Public 
Officials 

Now we investigate the effects of modifying a key component of the 
Public Official agent algorithms: the timing of their evacuation orders 
(Table 6). These experiments build on the results examined in sections 
4.1 and 4.2, related to the model’s behavior and the roles of different 
types of information in the system. They also begin to explore 

interactions between the evolving forecast uncertainty and the dynamics 
within the multi-agent model. 

The results are summarized in Table 8, which presents Cit-ag evac
uation rates in the six impact zones for the full set of experiments. To 
examine aspects of these results in greater detail, Fig. 11 depicts the 
timing of Officials’ evacuation orders (black dots) and Cit-ag evacuation 
decisions (histograms) for a subset of the experiments. The results for the 
Officials’ evacuation orders in Fig. 11 show that, as expected given the 
ideal forecasts and the model’s formulation, shifting the opening of 
Officials’ evacuation order window later (closer to storm arrival) leads 
to later issuance of evacuation orders. It also typically leads to fewer 
Officials issuing evacuation orders. This occurs primarily because as the 
time until storm arrival decreases, the track forecast uncertainty de
creases, which means that fewer coastal counties intersect with the 
forecast cone of uncertainty; fewer Officials therefore decide that 
evacuation orders are needed. 

The results in Table 8 show that shifting the potential timing of 
evacuation orders later also leads to fewer Cit-ags deciding to evacuate. 
This effect is most prominent in the coastal zones, where (as discussed in 
section 4.2) evacuation orders have the largest influence on evacuations. 
Fig. 11 indicates that, as one would expect, shifting the timing of 
evacuation orders changes the timing of Cit-ag evacuations. Together, 
Table 8 and Fig. 11 show that shifting evacuation orders later decreases 
earlier evacuation decisions and shifts some (but not all) of those 
evacuations later (closer to storm arrival). 

Building on section 4.2, this set of experiments further elucidates the 
influence of different types of information on evacuations. For example, 
for the coastal >64 knot zone results with earliest ¼ 24 hours in Fig. 11, 3 
peaks in Cit-ag evacuation timing are evident, at 30–54 hours, 18–24 
hours, and 0–6 hours prior to storm arrival. The first peak is due to 
forecast information, and the latter 2 peaks correspond to the times at 
which evacuation orders and environmental cues become available to 
signal risk. 

In addition, these results depict how the model simulates the trade
offs between Officials issuing evacuation orders earlier (when the track 
uncertainty is greater) versus waiting until closer to the storm’s arrival 
(when the forecast uncertainty is reduced). The former leads to more 
Officials issuing evacuation orders, which increases the percentage of 
Cit-ags evacuating from both high-impact areas and areas that end up 
not experiencing significant impacts from the storm. The latter leads to 
more geographically targeted evacuation orders but a lower percentage 
of Cit-ags evacuating from high-impact areas; it also leads to later 
evacuations, giving Cit-ags less time to complete the evacuation process. 
This illustrates how this type of model can be used to explore, in a 
simplified context, the effects of different communication and decision 
strategies by professionals during hazardous weather threats. 

4.4. Varying geographical distribution of Citizen-agent populations 

Next, we relax one of the idealizations in the experiments in sections 
4.1-4.3 and investigate the model’s behavior when the random 
geographical distribution of Cit-ags is changed to a realistic geograph
ical distribution (Table 6). We present these results to explore the effects 
of using a more realistic (less idealized) model setup, and to help 
interpret the results from subsequent experiments with realistic popu
lation distributions. 

Fig. 12 summarizes Cit-ag evacuation decisions for the two model 
configurations. To examine the spatial patterns in greater detail, Fig. 13 
depicts a map of Cit-ag evacuation decisions for a single completed 
simulation with a realistic Cit-ag geographical distribution. Overall, the 
simulations with a realistic population distribution exhibit some pat
terns similar to those discussed above for a random population distri
bution. For example, Cit-ag evacuation rates remain higher in coastal 
than in inland impact zones. However, on average, a much larger per
centage of Cit-ags decide to evacuate in the realistic population distri
bution simulations. There is also a shift in the spatial pattern of 

8 As discussed in section 4.1, evacuation rates are higher in the 34–64 knot 
zones than in the >64 knot zones because of the asymmetric, evolving nature of 
the storm (which leads to an asymmetric distribution of these zones across the 
populated model domain; Fig. 6) combined with the limited model domain and 
the averaging of evacuation rates across the west and east portions of Florida. 
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evacuations, including a decreased evacuation rate in the coastal >64 
knot zone and an increased evacuation rate in the coastal <34 knot zone. 

More in-depth investigation reveals that this counter-intuitive 
pattern arises from how the geographical distribution of Florida’s pop
ulation intersects with the forecasts, the forecast uncertainty, and the 
storm’s eventual track and impact zones. For example, in the realistic- 

population-distribution simulations, a large number of Cit-ags are 
located in the Miami area, in southeast Florida (Fig. 13). This region is in 
the forecast cone of uncertainty for the idealized Charley forecasts for 
much of the simulation period, and so evacuation orders are issued in 
this area and many coastal Cit-ags decide to evacuate (blue circles in 
southeast Florida in Fig. 13). Based on the storm’s track and size, 

Table 8 
Percentage of Cit-ags deciding to evacuate in each of the six impact zones and overall, for the model configurations in the third Settings column in Table 6. For each 
model configuration and impact zone, the mean and standard deviation are shown, calculated across the 100 simulations for that model configuration.  

Value of earliest possible issuance of evacuation orders 
(hours prior to anticipated storm arrival) 

Mean (std dev) % of Cit-ags deciding to evacuate 

Coastal >64 
knot zone 

Coastal 34–64 
knot zone 

Coastal <34 
knot zone 

Inland >64 
knot zone 

Inland 34–64 
knot zone 

Inland <34 
knot zone 

All 
zones 

54 (standard) 31.3 (13.6) 44.9 (10.4) 20.3 (5.5) 1.4 (0.7) 1.4 (0.7) 1.0 (0.6) 3.8 
(0.6) 

48 32.2 (13.9) 45.3 (10.7) 20.5 (5.9) 1.4 (0.9) 1.5 (0.7) 0.9 (0.6) 3.9 
(0.6) 

42 30.2 (14.8) 32.5 (8.9) 20.2 (5.5) 1.4 (1.0) 1.4 (0.7) 0.9 (0.5) 3.4 
(0.7) 

36 34.7 (12.2) 31.4 (9.0) 13.5 (4.8) 1.3 (0.8) 1.4 (0.7) 0.6 (0.5) 3.0 
(0.5) 

30 29.2 (13.4) 31.7 (9.2) 14.3 (4.8) 1.3 (0.8) 1.2 (0.6) 0.7 (0.5) 3.0 
(0.6) 

24 28.6 (12.0) 29.8 (8.8) 12.6 (4.7) 1.3 (0.7) 1.3 (0.6) 0.5 (0.5) 2.8 
(0.5) 

18 25.6 (11.0) 25.6 (8.6) 11.5 (4.2) 1.2 (0.8) 1.2 (0.7) 0.6 (0.5) 2.5 
(0.5) 

12 22.9 (11.4) 23.2 (9.0) 12.1 (3.9) 1.3 (0.8) 1.1 (0.6) 0.6 (0.5) 2.4 
(0.5) 

6 18.0 (10.3) 21.1 (7.2) 11.7 (4.1) 1.1 (0.8) 1.1 (0.6) 0.5 (0.5) 2.2 
(0.4) 

0 16.7 (10.1) 21.9 (7.4) 10.7 (3.9) 1.2 (0.9) 1.1 (0.6) 0.5 (0.5) 2.2 
(0.4)  

Fig. 11. Histograms of percentage of Cit-ags deciding to evacuate in sequential 6-h bins as in Fig. 8, for different values of the parameter earliest. The dashed red lines 
depict time ¼ earliest (the earliest lead time at which Officials can issue evacuation orders). The black dots represent the number of Officials who issued evacuation 
orders in each 6-h bin, averaged over the 100 simulations for each value of earliest; for 6-h bins with no black dot, no Officials issued evacuation orders. Results are 
shown for a subset of the model configurations in the third Settings column in Table 6, with earliest set, from top to bottom, to 48, 36, 24, 12, or 0 hours before 
anticipated landfall. 
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however, southeast Florida ends up not experiencing >34 knot winds. 
Thus, in the realistic-population-distribution simulations, a significant 
number of Cit-ags located in evacuation zones in the Miami area make 
decisions to evacuate that, in retrospect, were unnecessary. In Fig. 12, 
this appears as a larger evacuation rate in the coastal <34 knot impact 
zone. 

As these results illustrate, the uneven distribution of population in 
the real world complicates analyzing spatial patterns of evacuation de
cisions using aggregated metrics. More generally, the intersection be
tween specific hazard tracks or forecasts, complex coastal geography, 
and clustered populations can lead to decision patterns that are difficult 
to understand and attribute, even in this simplified model world. In the 
real world, which has many additional complexities, understanding 
patterns in protective decision making is even more challenging. This 
further indicates the potential value of this type of modeling laboratory, 
where different components can be simplified or modified systemati
cally to run a suite of experiments. 

4.5. Varying the storm and forecast skill: historical and ideal forecasts for 
Hurricanes Charley and Wilma 

Finally, we explore the effects of using historical rather than ideal
ized forecasts and of modifying the storm. All experiments shown in this 
section use a realistic rather than random geographical distribution of 
Cit-ags (Table 6). Using realistic forecast information adds a further 
complexity to the model simulations by adding a new dynamical 
component — evolving, imperfect forecast information — that is present 
in real weather forecast information and decision systems. These ex
periments also begin to investigate scenarios of interest to stakeholders 
such as meteorologists or emergency managers, by exploring how dif
ferences in storm characteristics and forecast information can propagate 
through the multi-agent system and translate into different patterns in 
public evacuations. 

The top panel of Fig. 14 shows results for Hurricane Charley (the 
storm used in the experiments in section 4.1-4.4) with historical fore
casts. Comparing these results with those for parallel simulations with 
ideal forecasts (lower panel of Fig. 12), we see that the mean evacuation 
rate is lower in the historical forecast simulations, especially in the 
coastal <34 knot impact zone. In other words, as one might expect given 
the less consistent risk information, imperfect forecasts lead to fewer Cit- 
ags deciding to evacuate. 

The middle and lower panels in Fig. 14 show results for simulations 
with Hurricane Wilma for ideal and historical forecasts. Like Charley, 
Wilma made landfall in southwestern Florida, but farther south and with 
a more west-to-east track (Fig. 6). Wilma was also a much larger storm 
than Charley, and so its >64 knot and 34–64 knot winds cover a much 
larger portion of the model domain. 

Comparing the Wilma and Charley results for ideal forecasts (middle 
panel of Fig. 14 and lower panel of Fig. 12), the overall pattern of 
evacuation rates is similar, except that the Wilma evacuation rates are 
much lower in the coastal <34 knot zone. In other words, a much lower 
percentage of Cit-ags in the coastal <34 knot zone decide to evacuate 
unnecessarily in the ideal-forecast simulations for Wilma than for 
Charley. This occurs because, unlike Charley, Wilma is a large enough 
storm that most of the areas that are within the cone of uncertainty 
several days before landfall – including the Miami area – end up expe
riencing >34 knot winds. Thus, few Cit-ags in the <34 knot impact zones 
for Wilma receive information indicating that they are at high risk and 
decide to evacuate. This illustrates how and why, given similar forecast 

Fig. 12. Percentage of Cit-ags deciding to evacuate in each of the six impact zones, for the model configurations in the fourth Settings column in Table 6: ideal 
forecasts for Hurricane Charley and random (upper) or realistic (lower) geographical distribution of the Cit-ag population. The box plots show the mean percentage 
evacuating and the distribution across 1000 simulations for each model configuration. The mean percentage of Cit-ags evacuating across the domain is 3.9% for 
random and 13.7% for realistic population distribution. 

Fig. 13. As in Fig. 7, for a single simulation with realistic geographical dis
tribution of Cit-ags and ideal forecasts for Hurricane Charley. 
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track uncertainty and decision algorithms, more people are likely to 
make evacuation decisions that turn out to be unnecessary for a smaller 
hurricane: fewer people end up experiencing strong winds and other 
impacts. 

Similar to the Charley results discussed above, running Wilma sim
ulations with historical forecasts produces lower evacuation rates than 
simulations with ideal forecasts (middle and lower panels of Fig. 14). In 
fact, the Wilma simulations with historical forecasts produce an overall 
Cit-ag spatial evacuation pattern similar to that which hurricane forecast 
and evacuation professionals might wish to see, with higher evacuation 
rates in higher-impact zones. As the other results presented show, 
however, this pattern is not an inherent outcome of the model’s dy
namics. Instead, it is produced by how the evolving, imperfect, and 
uncertain forecasts and the storm’s track and winds overlay onto the 
unevenly distributed population. This illustrates the challenges of un
derstanding the dynamics that lead to different outcomes in realistic 
hurricane situations. By enabling systematically perturbed experiments 
in more simplified contexts, this type of modeling laboratory can help 
build new understanding about the interactions among evolving envi
ronmental hazards, hazard information, information flow, and protec
tive decisions. 

Given the goals of the work presented here, we did not try to adjust 
the model to match real-world evacuation rates, and robust empirical 
data on spatially distributed evacuation rates for these two storms is not 
publicly available. However, the available empirical data indicates that 
the model is, to first order, generating reasonable evacuation rates in 
coastal high-impact zones. For example, a survey conducted by Smith 
and McCarty (2009) after Charley made landfall found that 36% of the 
sample in Charlotte County, Florida (the coastal county where Charley 
made landfall with >64 knot winds) reported evacuating. Another 
post-storm study of Charley, by Baker (2005), found that 22–53% of the 
sample in areas similar to the model’s coastal >34 knot zones and 
12–33% of the sample in areas similar to the model’s inland >34 knot 
zones reported evacuating. For Wilma, a post-storm survey conducted 
by Solis et al. (2010) in 3 southeastern Florida counties, all of which 
experienced >64 knot winds, found that 32% of the sample evacuated. 
Comparision with Fig. 14 indicates that these evacuation rates are 

similar to those generated by the model in our coastal 34–64 knot and 
>64 knot zones, for historical forecasts for the 2 storms. As noted in 
section 4.1, however, the evacuation rates in inland >34 knot zones 
produced by the model in its current configuration are lower than those 
in the real world. 

5. Summary and discussion 

This article conceptualizes and implements an agent-based model for 
studying the modern hazard information and decision system, in the 
context of hurricanes approaching the US coastline. The model includes 
multiple types of agents who interact with each other and with their 
physical and informational environments to access, interpret, and 
decide how to respond to evolving hazard information in a theoretically 
and empirically informed way. The resulting digital laboratory provides 
opportunities to study this complex dynamic system from a new 
perspective, complementing recent related work using other methods (e. 
g., Lee et al., 2009; Gudishala and Wilmot, 2010; Meyer et al., 2013, 
2014; Ruin et al., 2014; Morss et al., 2015, 2017; Lazrus et al., 2016; 
Bostrom et al., 2018; Demuth et al., 2018). 

We use the modeling laboratory to ask: How are the spatial and 
temporal patterns of protective decisions during hazardous weather 
threats affected when heterogeneous agents with semi-realistic decision 
rules access, share, and interpret evolving forecasts and other hazard 
information? Specifically, we perform experiments investigating how 
the model’s behavior and outcomes change when key agent parameters 
and the geographical population distribution, hurricane evolution, and 
forecast skill are varied. The results provide insight into how and why 
evacuation patterns can arise when interacting agents exchange and 
respond to evolving, uncertain information from different environ
mental and social sources. They also illustrate how interactions among 
evolving information, uncertainty, and decisions can produce complex, 
emergent dynamics. For example, as agents respond to information 
indicating decreasing uncertainty about the potential threat, feedback 
loops can lead to rapidly increasing risk assessments as a storm 
approaches. 

As the experiments further show, including factors that add 

Fig. 14. As in Fig. 12, for the model configurations in the rightmost Settings column in Table 6: historical forecasts for Hurricane Charley (upper), ideal forecasts for 
Hurricane Wilma (middle), and historical forecasts for Hurricane Wilma (lower), all with a realistic geographical distribution of Cit-ags. The mean percentage of Cit- 
ags evacuating across the domain is 5.8% for Charley with historical forecasts, 12.8% for Wilma with ideal forecasts, and 6.1% for Wilma with historical forecasts. 
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complexity and realism to the model — such as the coastal geography of 
a region such as Florida, the impacts of an asymmetric evolving storm, 
non-uniform geographical population distributions, and evolving 
imperfect forecasts — can complicate interpreting the model output. 
This demonstrates the value of this type of modeling laboratory for 
building in-depth understanding about hazard information and decision 
dynamics, by enabling systematic manipulation of factors that cannot 
easily be controlled in the real world. It also underscores the potential of 
this type of interdisciplinary modeling for addressing questions of in
terest to forecasters, emergency managers, and other stakeholders as 
well as researchers, by allowing experiments in a wide range of 
scenarios. 

The research described here advances scientific capabilities and 
knowledge in several ways. First, by adapting existing theoretical 
models and empirical understanding of hazard information flow and 
decision making for use in computational agent-based models, the work 
provides a new approach for exploring how evolving hazard information 
and decisions interact to create broader patterns of interest. Second, the 
modeling framework discussed here provides a unique toolkit for 
exploring the effects of different hazard forecast information (including 
timing and uncertainty), risk-related decision-making, and information 
network topologies on patterns in social decisions — experiments that 
are impossible to perform in the real world. Further, this research 
demonstrates how agent-based modeling can be used to study systems in 
which coupling with evolving environmental and social information 
contributes to the system dynamics along with coupling between the 
natural and human system. In these ways, this study aims to extend 
model-based hazards research toward work with theoretically and 
empirically informed agent-based modeling in complex, dynamic in
formation contexts. 

Based on the research reported here, we propose several areas for 
future related work. First, CHIME ABM can be used to address additional 
research questions related to hurricane forecasting, information 
communication, and evacuations. In particular, the forecast information 
currently represented in the model is much simpler than that typically 
available in the real world today. Thus, one possible extension for future 
experiments is incorporating additional or more complex forecast in
formation and/or representations of forecast uncertainty. This might 
include coupling the agent-based components of the model with more 
complex hazard and forecast information inputs, e.g., from numerical 
modeling of hurricanes and their impacts, to develop a more complete 
coupled physical-social modeling laboratory. Another possible exten
sion is to simulate different interpretations of forecast information 
content (e.g., by having agents modify their representations of the 
forecast) to explore how more complex aspects of information flow and 
interpretation interact to influence decisions. The model could also be 
extended to study sequences of hurricanes during one or multiple years, 
in order to explore the dynamics of how hurricane-related experiences 
influence attitudes and behaviors in subsequent storms or other longer- 
term aspects of hazard risks and resilience. 

Another area for future research is revising the model structure and 
its components, including the agent algorithms, hazard information, 
social and information networks, and evaluation of impacts, to address 
idealizations in the current version. In doing so, it is important to 
consider the potential trade-offs of adding different forms of realism and 
complexity, in the context of the research goals. We designed CHIME 
ABM to be capable of using quasi-realistic geography, populations, 
storms, and forecasts, imported using real data. Nevertheless, as the 
results in section 4 show, abstractions and simplifications can enhance 
the interpretability of the model output and the value of the model in 
elucidating key dynamics of the system of interest. 

The model can also be adapted to study other hazards for which the 
evolution of different types of information and its exchange among 
multiple types of actors play important roles. For example, floods, 
wildfires, and volcanic eruptions take place at temporal and spatial 
scales similar to those of hurricanes; the CHIME modeling environment 

could readily be adapted to investigate decision-making in these con
texts. Tsunamis, tornados, and flash floods typically unfold more quickly 
and affect smaller regions; CHIME ABM would require more extensive 
modification to explore information flow and decision-making for such 
hazards. 

An additional potential area for future work is comparing quasi- 
realistic model simulations with observed social data from specific his
torical hurricanes to refine the model structure and parameters. In its 
current form, CHIME ABM is well suited for exploring aspects of the 
system’s behavior by comparing results across sets of simulations. 
Qualitative comparisons with prior related research and empirical 
evacuation data suggest that the model produces reasonable evacuation 
patterns, but it does not attempt to realistically represent the multitude 
of factors that influence real-world individual and household evacuation 
decisions in specific situations. More in-depth quantitative comparisons 
with real-world data may therefore help improve the model’s capabil
ities to address practical questions of interest. However, given the 
limited availability of the types of comprehensive empirical data 
required to perform such comparisons, new data sets may need to be 
collected or compiled. 

Real-world decisions are influenced by many complicated factors 
that must be simplified in any modeling approach. Since little is known 
about the emergent dynamics of the type of system being studied here, 
our aim was to begin developing fundamental understanding that could 
form building blocks to be expanded on in future related modeling work. 
Given these goals, CHIME ABM is purposefully abstracted from the real 
world in multiple ways, and so it has many limitations if evaluated from 
the perspective of simulating actual hurricane decisions and outcomes. 
The model was developed, however, using theory, research findings, 
expertise, and data from several relevant disciplines. The modeling 
effort is also intersecting with ongoing research on hurricane hazard 
predictability, information flow, and decision making being conducted 
as part of a larger multi-method research project (Morss et al., 2017). 
Thus, the model is both informed by and feeds back into empirical 
research. Interpreted in conjunction with other work investigating 
real-world hazard information flow and decision making, we propose 
that modeling research such as that conducted here has significant po
tential to develop new understanding, identify strengths and weaknesses 
in hazard forecasting and risk communication, and recommend areas for 
improvement. 

Software/data availability 

CHIME ABM was implemented in the freeware agent-based modeling 
platform NetLogo version 5.3.1 and later updated to NetLogo version 
6.0. The model code, supporting documentation, and input files are 
archived on the ComSES.net library (OpenABM.com) at the URL: https 
://www.comses.net/codebases/5504/releases/1.4.0/. 
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